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Foreword 

The Working Party on Multi-scale Modelling of Fuels and Structural Materials for Nuclear 
Systems (WPMM) was established under the auspices of the Nuclear Energy Agency 
(NEA) Nuclear Science Committee (NSC) to review multi-scale models and simulations 
as validated tools to predict the behaviour and performances of fuels and structural 
materials, in support of nuclear systems design and fuel fabrication. The WPMM’s 
objective is to promote the exchange of information on theoretical and computational 
methods, experimental validation, and other topics related to modelling and simulation of 
nuclear materials. The WPMM established the Expert Group on Structural Materials 
Modelling in 2009 to provide targeted critical reference reviews of the state of the art in 
relation to the use of multi-scale modelling so as to describe the changes induced by 
irradiation in structural nuclear materials. The aim of this expert group is to reliably 
reproduce experimental data, while providing the keys to understand and interpret existing 
experimental results, with a view to predicting the behaviour of structural nuclear materials 
under unexplored conditions and supporting the choice and the development of new 
materials. The present volume presents a state-of-the-art review of physical multi-scale 
models rooted in computational physics, to describe the properties and behaviour of 
materials of interest for the nuclear community. 
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Executive summary 

Ram Devanathan
1
 and Veena Tikare

2
 

1
Pacific Northwest National Laboratory, United States 

2
Sandia National Laboratories, United States 

This report was commissioned by the Nuclear Energy Agency Expert Group on Multi-scale 
Modelling Methods (EGM3) under the Working Party on Multi-scale Modelling of Fuels 
and Structural Materials for Nuclear Systems (WPMM) of the Nuclear Science Committee 
(NSC). The goal is to provide to the nuclear energy community an overview of models and 
computer simulation methods of interest at different length and time scales for the materials 
process. Given the large scope of such an endeavour, it has taken the dedicated efforts of 
an international team of experts to do justice to this subject. The integration of these models 
provides a logical path to develop predictive understandings of the performance of 
materials used in the current fleet of nuclear reactors and to design new materials for 
advanced fission and fusion reactors. 

The report starts at the electronic structure level with a chapter on density functional theory 
(DFT) written by Uldry and Krack. The authors introduce the framework of DFT, the 
independent electrons approximation, Hohenberg and Kohn theorems and the Kohn-Sham 
equations. The discussion also delves into the choice of exchange correlation functionals 
and the differences between various implementations of DFT. In the area of nuclear 
materials, DFT can be used to interpret experimental observations and to provide 
parameters for the empirical potentials used in larger scale molecular dynamics (MD) 
simulations. DFT calculations can be used to fill knowledge gaps, such as thermodynamic 
data for multicomponent systems where reliable experimental data is missing for materials 
systems of interest. 

In the second chapter, Kühne introduces ab-initio molecular dynamics (AIMD), evaluating 
the interaction potential between atoms using parameter-free electronic structure 
calculations. By treating the ions classically, this method makes it possible to accurately 
determine both the static and dynamic properties of the system. The chapter presents Born-
Oppenheimer MD and Car-Parrinello MD. By way of illustration, the author discusses 
results from liquid silicon and silica. Given that one can simulate systems with hundreds 
of atoms over a time scale of the order of nanoseconds, it is possible now to tackle nuclear 
materials problems using ab-initio methods that were previously considered impossible due 
to computational resource limitations. 

It is possible to increase the length and time scales of the simulation, although with some 
compromise in terms of accuracy by performing classical MD simulations. Interatomic 
potentials, presented in Chapter 3, written by Zeitler and Criscenti, are at the heart of MD 
simulations. These potentials are analytical expressions of potential energy as functions of 
the interatomic distance, bond angles and related measures. These expressions use 
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parameters that are optimised by fitting them to known experimental properties, such as 
lattice constants and elastic constants, as well as data from DFT, such as defect formation 
energies. Such potentials can also be used in kinetic Monte Carlo (KMC) simulations. The 
authors begin with a discussion of the different functional forms of potentials in use and 
then focus on the state of the art in potentials for nuclear materials. Potentials for nuclear 
fuel, cladding, glassy materials and waste forms are analysed in detail. The chapter also 
explores the challenges in parameterising potentials with limited experimental data. 

The fourth chapter on classical MD simulation, written by Duffy, continues the discussion 
of dynamical simulation of interacting atoms or ions by numerically integrating Newton’s 
equations of motion. As an example of the close ties between chapters and the logical 
progression of scales, this chapter briefly touches upon the interatomic potentials covered 
in the previous chapter. The early stages of radiation damage can be modelled using MD 
simulations of displacement cascades. These simulations only account for nuclear stopping. 
For materials that are sensitive to the effects of electronic excitations, the authors point out 
the need to go beyond cascade simulations. With recent developments in reactive potentials 
and the incorporation of electronic effects in MD simulations, there is reason to be 
optimistic about the predictive modelling of the performance of irradiated materials.  

Uberuaga, Perez and Voter take atomistic simulations a step further in the fifth chapter by 
presenting accelerated dynamics methods that enable the study of the long-time evolution 
of systems driven far from equilibrium. These methods fall under the categories of 
accelerated MD or adaptive KMC, and include parallel replica dynamics, hyperdynamics, 
temperature accelerated dynamics and κ-dynamics. The authors provide illustrative 
examples, such as non-equilibrium transport of Xe in irradiated UO2 nuclear fuel, 
aggregation of defects in MgO and enhanced vacancy-interstitial recombination near grain 
boundaries. The chapter concludes with a discussion of the limitations of accelerated 
dynamics methods, and the potential to reach millisecond time scales and beyond with 
emerging computer architectures. 

Chapter 6 also discusses the potential of KMC methods to reach much longer time scales 
than classical MD. In Chapter 6, Caturla and Stoller describe four KMC methods relevant 
to this report, namely atomistic KMC, object KMC, event KMC, and first passage KMC. 
The goal is to reach time scales of the order of seconds or even hours to enable direct 
comparison with experimental observations. The authors also present advanced methods, 
such as on-the-fly KMC that is especially relevant when the number of events possible is 
too large to be tabulated a priori or when the reactions strongly depend on the changing 
local environment. It is also possible to use machine learning to predict energy barriers on 
the fly in complex systems, where it is challenging to catalogue transition rates. There is 
considerable potential to enhance understanding of microstructural evolution under 
irradiation by combining KMC with other methods, including cluster dynamics and 
dislocation dynamics (DD). 

In Chapter 7, Topuz, Luzginova and van der Giessen describe the DD method that lies 
between atomistic dynamics and crystal plasticity. DD uses atomistic input from DFT 
calculations, MD and KMC simulations and microscopy experiments, such as 
microstructural information, defect properties, defect density and defect distribution. In 
turn, DD provides the critical resolved shear stress and hardening rate as parameters to be 
used in crystal plasticity calculations. The focus of this chapter is on dislocation interactions 
with irradiation-induced defects. The authors provide keen insights into the limitations of 
DD and the need for further improvements, especially in describing fracture of nuclear 
materials. 
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The discussion moves further along the scale towards the continuum level in the next 
chapter. The phase-field model, presented in Chapter 8 by Welland, uses order parameters 
to model the evolution of the microstructure. Here the atomic scale is bypassed, and the 
focus is on microstructure and interface evolution at the mesoscale. This chapter presents 
the Allen-Cahn and Cahn-Hilliard models. Data from thermodynamic databases and 
parameters from DFT and MD in the form of interfacial energies and diffusion coefficients 
serve as much-needed input for the phase-field model. There is growing potential for 
expanding the reach of this method using novel techniques, for example adaptive mesh 
refinement that reduce the computational cost. 

Chapter 9 reviews the rate theory of defect clustering in irradiated materials, with Seif and 
Ghoniem discussing the clustering of defects when materials are driven far from 
equilibrium due to bombardment by energetic particles. This theory is valuable for 
understanding microstructure evolution under irradiation at experimentally-relevant length 
and time scales. The authors review the physics of defect production under irradiation to 
provide an understanding of the processes that contribute to the generation and annihilation 
of defects. As in the case of the methods discussed earlier, DFT and MD play a valuable 
role in providing key parameters. There is also potential to couple rate theory to DD so as 
to understand embrittlement and failure of irradiated materials.  

Finally, in Chapter 10, Rashid discusses the modelling of nuclear fuel using the finite 
element method. This macroscale model is used to understand the thermos-mechanical 
behaviour of irradiated nuclear fuel by solving coupled displacement and temperature 
equations. The chapter introduces the pellet-clad mechanical interaction problem and the 
constitutive formulation used to model fuel pellet fracture. Common codes that are used to 
implement the model and limitations of the method, such as the lack of microstructural 
representation, are also presented.   

Overall, the modelling methods presented in the present report represent a progression of 
scales from the atomic to the macro scale. There is considerable potential to link scales by 
passing relevant parameters from the lower scale or by providing microstructural 
information from a higher scale to lower scale models. Such multi-scale modelling can 
overcome the limitations imposed by the current use of empirical models in computer 
codes, and enable predictive understanding of materials used in nuclear reactors. 
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1.  Density functional theory 

A. Uldry and M. Krack 
Paul Scherrer Institute, Switzerland 

1.1. Introduction 

Density functional theory (DFT) forms the basis of the multi-scale ladder. It deals with the 
fundamental interactions in materials at the level of the electrons, and provides the means 
of solving the resulting quantum many-body problem. DFT is a first-principles method in 
the sense that, in its raw formulation, no empirical laws or adjustable parameters are 
needed. Going from the DFT formulation to an actual ground state requires, however, a 
series of approximations. The use of pseudopotentials may introduce certain types of errors, 
and the accuracy and applicability of the method rest with the choice of exchange-
correlation functionals. The decision on the choice of functionals is usually made by 
comparison with experimental results or based on past experience with similar materials. 
Most functionals, including those popular within the nuclear materials community, benefit 
to some degree from cancellations of errors. Despite such shortcomings, DFT has been an 
extremely successful approach to understanding properties of matter and also as a 
predictive tool. Both the theoretical aspects of functionals and the computational 
implementations of DFT are active fields of research and subject to future developments. 

1.2. The first-principles approach and the density functional theorems 

This section sketches the essential facts behind DFT. Proofs and in-depth analysis can be 
found in the two text books upon which this introduction is loosely drawn, Richard Martin's 
(2004), and Parr and Young's book (1989). We first introduce the fundamental interactions 
that are taken into account. The central theorem of DFT, that all properties of an interacting 
system are unique functionals of the ground state density, is briefly stated. Finally, the 
formulation of the DFT as an independent particles problem in an effective potential is 
presented. 

The starting point for a closed system of electrons and nuclei is to consider the kinetic 
energy and the electrostatic Coulomb interactions of all particles present. The Hamiltonian 
would therefore include the kinetic energy operator of the electrons T�e and of the nuclei T�n, 
the interactions between electrons V�ee, and between nuclei V�nn, and the interactions 
between the electrons and the nuclei V�ne. The wave functions of such a system depend 
simultaneously on the co-ordinates of all the electrons as well as that of the nuclei. 

The very first step taken in the framework of DFT is to apply the Born-Oppenheimer 
approximation (1927), also called the adiabatic approximation. It consists in neglecting the 
kinetic energy of the nuclei 

 T�n = −�
∇𝐼𝐼2

2𝑀𝑀𝐼𝐼

𝑁𝑁

𝐼𝐼

 (1) 

This is reasonable in view of the large mass of the nuclei and their relative inertia compared 
to the electrons. As a consequence, the movements of the electrons are decoupled from that 
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of the nuclei. In classical molecular dynamics (MD) the nuclei are treated as point particles 
within Newton's formalism. In DFT, the positions of the nuclei are viewed as parameters, 
with the electrons moving instantaneously with the nuclei. One thereby reduces the 
problem to one of electrons interacting with one another via the Coulomb interaction, and 
with an external potential generated by the nuclei. The DFT Hamiltonian for a system 
consisting of 𝑁𝑁 nuclei and 𝑛𝑛 electrons in atomic units ([a.u.]: ℏ = 𝑚𝑚e = 𝑒𝑒 = 1

4𝜋𝜋𝜖𝜖0
= 1) is 

therefore given by 

 H� = V�nn + T�e + V�ee + V�ne 

(2) 
  = ��

𝑍𝑍𝐼𝐼𝑍𝑍𝐽𝐽
�𝑹𝑹𝐽𝐽 − 𝑹𝑹𝐼𝐼�

𝑁𝑁

𝐽𝐽>𝐼𝐼

 
𝑁𝑁

𝐼𝐼

−�
∇𝑖𝑖2

2

𝑛𝑛

𝑖𝑖

+ ��
1

�𝒓𝒓𝑗𝑗 − 𝒓𝒓𝑖𝑖�

𝑛𝑛

𝑗𝑗>𝑖𝑖

𝑛𝑛

𝑖𝑖

−��
𝑍𝑍𝐼𝐼

|𝒓𝒓𝑖𝑖 − 𝑹𝑹𝐼𝐼|

𝑛𝑛

𝑖𝑖

𝑁𝑁

𝐼𝐼

 

The labels 𝑖𝑖, 𝑗𝑗 and 𝐼𝐼, 𝐽𝐽 run over all electrons, respectively all nuclei; 𝑟𝑟𝑖𝑖 and 𝑅𝑅𝐼𝐼 denote the 
position of an electron, respectively of a nucleus of charge 𝑍𝑍𝐼𝐼 and mass 𝑀𝑀𝐼𝐼. The 
electrostatic interactions between nuclei V�nn cause merely an energy shift, which can be 
ignored for the present discussion. At this stage the problem we are set to solve 

 H� Ψ({𝒓𝒓𝑖𝑖,𝜎𝜎𝑖𝑖}) = 𝐸𝐸 Ψ({𝒓𝒓𝑖𝑖,𝜎𝜎𝑖𝑖}) (3) 

is still beyond reach. Although the wave function Ψ({𝒓𝒓𝑖𝑖,𝜎𝜎𝑖𝑖}) now only depends on the co-
ordinates 𝒓𝒓𝑖𝑖 and spins 𝜎𝜎𝑖𝑖 of the electrons, this dependence is non-trivial, as all the co-
ordinates of all the electrons are still simultaneously involved. 

A standard way to address a many-body problem such as the one above can be invoked at 
this stage. The independent electrons approximation is obtained by considering the 
electrons as moving independently in an effective potential, as yet unspecified. The wave 
function Ψ({𝒓𝒓𝑖𝑖,𝜎𝜎𝑖𝑖}) for 𝑁𝑁 particles decouples into 𝑁𝑁 one-particle wave functions, and 
consequently, equation (3) with the Hamiltonian (2) is replaced by 𝑁𝑁 equations of the type 

 H�eff Ψ𝑖𝑖𝜎𝜎(𝒓𝒓) =  𝜖𝜖𝑖𝑖𝜎𝜎  Ψ𝑖𝑖𝜎𝜎(𝒓𝒓)   with  H�eff = −
∇2

2
+ 𝑉𝑉eff

𝜎𝜎 (𝒓𝒓) (4) 

Finding an effective potential that maps as accurately as possible the 𝑁𝑁 independent 
particles problem (4) into the 𝑁𝑁 many-body problem (2) is a real challenge. A way to tackle 
the many-body problem via the electron density 𝑛𝑛(𝒓𝒓) = ∑ 𝛿𝛿(𝒓𝒓 − 𝒓𝒓𝑖𝑖)𝑖𝑖 , and its exact 
reformulation as an independent particles problem, were provided respectively by 
Hohenberg and Kohnin 1964, and Kohn and Sham in 1965. 

The Hohenberg and Kohn theorems (1964) apply to any interacting particles in an external 
potential. This includes the system of electrons with Coulomb interactions V�ee in the 
electrostatic field of the nuclei V�ne of the full many-body problem (2). The first theorem 
states that all properties of the interacting system are completely determined by the 
electronic ground state density 𝑛𝑛(𝒓𝒓), and that the total energy of the system 𝐸𝐸 is a unique 
functional of the density: 𝐸𝐸[𝑛𝑛(𝒓𝒓)]. The second theorem concludes that the density which 
minimises the total energy 𝐸𝐸[𝑛𝑛(𝒓𝒓)] is the exact ground state density, and similarly, that the 
exact ground state is the minimum of the functional.  

The Hohenberg-Kohn theorems are wonderfully general but limited to establishing the 
existence of a universal functional 𝐸𝐸[𝑛𝑛(𝒓𝒓)], which, minimised, gives the exact ground state. 
The theorems provide no pointers as to the form of 𝐸𝐸[𝑛𝑛(𝒓𝒓)]. The only straightforward case 
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is that of the external potential, the electrons-nuclei interaction. The functional 𝐸𝐸ext[𝑛𝑛(𝒓𝒓)] 
is directly given by 

 𝐸𝐸ext[𝑛𝑛(𝒓𝒓)] = �𝑉𝑉�ext 𝑛𝑛(𝒓𝒓) 𝑑𝑑𝒓𝒓    with  V�ext = −�
𝑍𝑍𝐼𝐼

|𝒓𝒓 − 𝑹𝑹𝐼𝐼|

𝑁𝑁

𝐼𝐼

 (5) 

A particular difficulty is raised on the other hand by the kinetic energy T�e. No explicit 
relationship between the kinetic energy and the density is known. The next progress will 
be made by using an independent particles formulation, which allows for a formulation of 
the kinetic energy. 

The essential step towards a practical DFT formalism was realised by Kohn and Sham 
(1965). They write the density in terms of non-interacting particles 𝑛𝑛(𝒓𝒓) = ∑ |Ψ𝑖𝑖𝜎𝜎|2𝑖𝑖,𝜎𝜎 . 
Although this density does represent the electron density, the individual single-particle 
wave functions Ψ𝑖𝑖𝜎𝜎 are not the wave functions of individual electrons, but that of 
mathematical objects. A quantity 

 𝑇𝑇𝑠𝑠 = −
1
2
�⟨Ψ𝑖𝑖σ|∇2|Ψ𝑖𝑖σ⟩
𝑖𝑖,𝜎𝜎

 (6) 

can be defined as the independent particles kinetic energy, which in general differs from 
the many-body energy of the operator T�e. The Coulomb interaction can be turned into an 
expression of the density by defining  

 𝐸𝐸H[𝑛𝑛] =
1
2
�
𝑛𝑛(𝒓𝒓1) 𝑛𝑛(𝒓𝒓2)

|𝒓𝒓1 − 𝒓𝒓2| 𝑑𝑑𝒓𝒓1𝑑𝑑𝒓𝒓2 (7) 

the so-called Hartree energy. It too differs in principle from the full many-body version of 
the Coulomb interaction 𝐸𝐸ee[𝑛𝑛]. An exact formulation of the functional 𝐸𝐸[𝑛𝑛] for the 
electrons-nuclei problem can however be given as 

 𝐸𝐸[𝑛𝑛] = 𝑇𝑇𝑠𝑠[𝑛𝑛] + 𝐸𝐸H[𝑛𝑛] + 𝐸𝐸ext[𝑛𝑛] + 𝐸𝐸xc[𝑛𝑛] (8) 

with 𝐸𝐸xc[𝑛𝑛], called the exchange-correlation functional, defined as 

 𝐸𝐸xc[𝑛𝑛] = (𝑇𝑇[𝑛𝑛] − 𝑇𝑇𝑠𝑠[𝑛𝑛]) + (𝐸𝐸ee[𝑛𝑛]− 𝐸𝐸H[𝑛𝑛]) (9) 

So the problem of mapping the non-interacting problem to that of a full many-body problem 
is delegated to the exchange-correlation functional. Assuming 𝐸𝐸xc[𝑛𝑛] is known, the 
transformation (2) to (4) is now exact, with the effective Hamiltonian replaced by the Kohn-
Sham Hamiltonian 

 H�KS = −
∇2

2
+ V�ext(𝒓𝒓) + �

𝑛𝑛(𝒓𝒓′)
|𝒓𝒓 − 𝒓𝒓′|

𝑑𝑑𝒓𝒓′ + V�xc(𝒓𝒓)   with V�xc(𝒓𝒓) =
𝜕𝜕𝐸𝐸xc[𝑛𝑛(𝒓𝒓)]
𝜕𝜕𝑛𝑛(𝒓𝒓)

 (10) 

These are the Kohn-Sham equations, which can be solved by iteration. A starting density 
is calculated from a set of given wave functions. The density is then used to solve the Kohn-
Sham equations, which in turn deliver a new set of wave functions. The procedure is 
repeated until self-consistency is achieved. 
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1.3. Choice of functionals 

The Kohn-Sham equations (10) allowed DFT to become a practical approach for finding 
the ground state of interacting particles. Provided the functional 𝐸𝐸xc[𝑛𝑛] is known, the Kohn-
Sham equations are an exact formulation of the many-body problem (2). In practice, the 
exchange-correlation functional is not known and must be approximated. Over the years, 
substantial developments have added different levels of sophistication to the exchange-
correlation energy functional, usually at an added computational cost; the different levels 
are often quoted as the rungs of the Jacob's ladder (Perdew, Schmidt, 2001). 

The notion of exchange and correlation is born from applying the condition of 
antisymmetry of the many-body wave function, in particular on the Coulomb term V�ee. The 
alternative to DFT for electronic structure calculations, the Hartree-Fock method, builds in 
the antisymmetry of the wave function by constructing the many-body wave function with 
Slater determinants of single-particle wave functions obeying a Hamiltonian of the type 
(4). The exchange contribution appears in that case as a term lowering the energy, 

 𝐸𝐸x = −�
1
2
�Ψ𝑖𝑖𝜎𝜎∗

𝑖𝑖,𝑗𝑗,𝜎𝜎

(𝒓𝒓1)Ψ𝑗𝑗𝜎𝜎∗(𝒓𝒓2)
1

|𝒓𝒓1 − 𝒓𝒓2|Ψ𝑗𝑗
𝜎𝜎(𝒓𝒓1)Ψ𝑖𝑖𝜎𝜎(𝒓𝒓2) 𝑑𝑑𝒓𝒓1𝑑𝑑𝒓𝒓2 (11) 

the rest of the Coulomb term being the Hartree energy (7). The exchange term involves 
electrons of same spins. The concept of “exchange hole” is often introduced at this stage 
as describing the region around an electron that other electrons of the same spin avoid 
(Jones, Gunnarsson, 1989). Therefore, in Hartree-Fock the exchange is exact, but the many-
body correlations are neglected. In DFT both correlations and exchange have to be taken 
into account in the exchange-correlation functional. 

Local density approximation 
Because the Hartree term already explicitly included in the Kohn-Sham equations (10) is a 
long-range interaction, it seems reasonable to assume that the missing contributions that 
must come into 𝐸𝐸xc are of local nature. The local-density approximation (LDA) (Perdew, 
Zunger, 1981; Vosko, Wilk, Nusair, 1980) constructs 𝐸𝐸xcLDA[𝑛𝑛(𝒓𝒓)] from that of the 
homogeneous electron gas having the same density. In the latter case the correlation and 
exchange are local and calculable typically by quantum Monte Carlo simulations 
(Ceperley, Alder, 1980). This seemingly too simple approach has proven surprisingly 
successful for a wide range of systems. The success of the LDA has been explained (Jones, 
Gunnarsson, 1989) by three factors: the sum rules related to the “exchange hole” are 
conserved in the LDA formulation; V�ee depends only on the spherical average of the 
“exchange hole”; and the errors introduced in the separate exchange and correlation energy 
tend to cancel out. LDA is still widely used, although it is known to overbind and 
underestimate lattice parameters; cohesive energies and bulk modulus are found too large. 
Applied to pure iron, LDA's extension to spin polarised systems predicts a non-magnetic 
or anti-ferromagnetic ground state, instead of the ferromagnetic body centred cubic (bcc) 
structure (Wang, Klein, Krakauer, 1985). 

Generalised gradient approximation 
A step further is realised by the inclusion of the gradient of the density (or spin density) in 
the expression for the exchange-correlation functional 𝐸𝐸xcGGA[𝑛𝑛(𝒓𝒓)],∇𝑛𝑛(𝒓𝒓)]. The 
generalised gradient approximation (GGA), unlike LDA, must be parametrised and 
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sometimes deviates from strict first principles; a popular parametrisation used for 
d-electron materials like Fe and Fe-alloys as well as nuclear fuel materials like uranium 
dioxide (UO2) is that of Perdew, Burke and Ernzerhof (PBE) (1996). An alternative is that 
of Perdew and Wang (PW91) (1992). Newer parametrisations (Hammer, Hansen, Norskov, 
1999; Wu, Cohen, 2006) have been proposed recently but, to our knowledge, have not been 
widely used for nuclear materials. GGA is usually more accurate than LDA, although it has 
been found to soften bonds too much in some highly co-ordinate atoms. Both LDA and 
GGA are failing, however, to make correct predictions for strongly-correlated materials, 
like UO2. In particular, for the latter compound, a Mott insulator, LDA and GGA wrongly 
predict a metallic ground state. 

DFT+U 
Strongly-correlated systems, like Mott insulators, are manifestations of a many-body 
physics that is not captured by local or semi-local exchange-correlation functionals. The 5f 
actinide oxides used as nuclear fuels can be tackled within DFT by the inclusion of an on-
site Coulomb repulsion in the formalism. Different formulations exist (Dudarev et al., 
1998; Lichtenstein, Anisimov, Zaanen, 1995). In essence, the DFT+U functionals 
(Lichtenstein, Anisimov, Zaanen, 1995) belong to the class of orbital-dependent 
functionals, whereby the localised orbitals (typically d or f) are shifted relative to other 
orbitals. The selective corrective term, called effective Hubbard U parameter, i.e. 𝑈𝑈eff =
𝑈𝑈 − 𝐽𝐽, is usually entirely empirical and is often adjusted in order to reproduce an 
experimentally known property, for instance the band gap of the studied material, although 
methods exist to calculate U as well (Anisimov, Aryasetiaman, Lichtenstein, 1997; 
Coconnioni, de Gironcoli, 2005). The DFT+U term introduces basically a penalty function 
that “discourages” a delocalisation of the d or f electrons, since it favours energetically 
either empty or fully occupied orbitals. Unfortunately, this creates a manifold of possible 
localisation patterns for the f electrons, which causes the occurrence of metastable states 
(Jollet et al., 2009; Dorado et al., 2009, 2013). This introduces technical problems with the 
convergence to the ground state, since the self-consistently converged solution for actinide 
materials using DFT+U depends on the initial 5f orbital occupations. Several recipes have 
been devised in the literature to tackle this problem, e.g. the occupation matrix control 
(OMC) (Dorado et al., 2009), the U ramping method (Meredig, 2010), the quasi-annealing 
method (Geng et al., 2010), the controlled symmetry reduction method (Gryaznov, Heifets, 
Kotomin, 2012) and combined methods using 5f occupation smearing with U ramping 
(FOUR) (Rabone, Krack, 2013). 

Self-interaction correction 
Another type of orbital-dependent functionals is covered by the label Self-Interaction 
Corrected (SIC). In Hartree-Fock the spurious 𝑖𝑖 = 𝑗𝑗 term entering into the Hartree 
expression (7) is automatically exactly compensated by the exchange term (11). In DFT 
such a cancellation will have to occur via the exchange-correlation functionals. Formalisms 
whereby the self-interaction is subtracted orbital by orbital for all occupied orbitals have 
been developed (Svane, Gunnarsson, 1990; Svane et al., 1998). In effect, the self-
interaction correction allows the localisation of states, particularly in rare-earth materials, 
and therefore it leads to an improved treatment of the magnetic ground state. 

Dynamical mean field theory 
Dynamical mean field theory (DMFT) (Georges, 1996) is often cited as the most successful 
treatment to date of strongly-correlated systems. Although it does include elements from 
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band structure, DMFT is not as such a DFT approach. The self-energy is determined self-
consistently within the Green's function formalism via the so-called Anderson single-
impurity problem, the latter requiring a sophisticated computational apparatus in order to 
be solved. DMFT is therefore a powerful, but computationally very expensive approach. 
First applications of DMFT variants like DFT+DMFT to nuclear fuel materials like 
uranium and plutonium oxides as well as their mixed oxides (MOX) are being performed, 
but the model system sizes are still limited to a few tenth atoms (Amadon, Condens, 2012). 

Hybrid functionals 
Hybrid functionals have been proposed as a mean to combine the exact exchange property 
of Hartree-Fock and the correlations from GGA. This type of approach is useful when the 
interest lies in defect energies located in the band gap of a semi-conductor. Hybrid 
functionals are not entirely first-principles, as a mixing parameter has to be defined, and 
are not easily evaluated for solids, since an explicit (orbital based) calculation of the 
Hartree-Fock exchange is required which is computationally expensive. The electronic 
properties of nuclear fuel materials like UO2 (Kudin, Sciseria, Martin, 2002) as well as of 
other actinide oxides (Prodan, Scuseria, Matin, 2007) are better described with respect to 
plain DFT methods, but hybrid functionals share the convergence problems with DFT+U 
methods due to metastable states while being computational much more demanding, 
making the exploration of many occupation pattern computationally very expensive. 

Meta-generalised gradient approximation functionals 
Various other exchange-correlation functionals are available, although not popular within 
the nuclear materials community. Meta-GGA (Tao et al., 2003) comes in the third position 
after LDA and GGA in the Jacob's ladder as it includes a non-empirical dependence on the 
orbital kinetic energy density, i.e. terms of order ∇2𝑛𝑛(𝒓𝒓). It has been successfully tested on 
molecules, hydrogen-bonded complexes, and ionic solids (Tao et al., 2003). Despite the 
further order and the extra cost, this approximation remains semi-local in nature. 

Van der Waals interactions are not included in any of the local or semi-local treatments, 
but can be considered in an empirical manner using the DFT-D method (Grimme et al., 
2010), which provides a dispersion correction for the elements H to Pu for popular 
exchange and correlations functionals. 

Incorporation of a random phase approximation (RPA) approach (Amadon, Applencourt, 
Bruneval, 2014) could account for such long-range interactions straightforwardly, even 
though at very high computational cost. Van der Waals forces are usually not relevant in 
the nuclear context. 

As a conclusion, we would like to emphasise that physical properties may depend strongly 
on the choice of functionals: comparison with experiments for the property under 
consideration should dictate the choice of functionals. 

1.4. Density functional theory implementations 

Many different implementations of the resolution of the Kohn-Sham equations (10) have 
been made available to users. They differ most predominantly in the choice of basis sets 
for the single-particle wave functions, their different use or not of pseudopotentials, and 
whether the system is periodic or a cluster of atom. 
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The one-particle wave functions must be expanded in a basis set in order to proceed with 
the solution of the Kohn-Sham equation. The prototype choice is between localised sets of 
orbitals, or a plane waves basis set. In theory, the dimension of the function space is infinite. 
In practice, however, the number of basis functions must be limited, of course. A localised 
basis set will have basis functions that already look like the objects they will eventually 
construct, i.e. have large weights around the atomic positions. These basis sets are biased 
but computationally cheap, since very few basis functions will be needed to represent the 
electronic density, if the functions are well chosen. Plane waves, on the other hand, are free 
of any bias and fully flexible. The convergence with an increasing number of plane waves 
is also straightforward. However, many plane waves are needed to reconstruct the density 
around the atom. The situation is worse near to the nuclei, where strong variations occur. 
It is also not unusual to combine atomic-like functions in some regions of space with a 
plane waves basis set. 

It is a general practice to treat core electrons, semi-core electrons and valence electrons 
separately. When a plane waves basis is chosen, the potentials of the core electrons are 
smoothed out, thereby reducing the oscillations and allowing the number of plane waves to 
remain manageable. These so-called pseudopotentials therefore introduce another level of 
approximation and inaccuracy. They come in different types (norm-conserving, ultra-soft, 
etc.) and must be tested for transferability in all possible situations. 

A powerful approach combining the use of pseudopotentials and all-electron accuracy is 
the Projector augmented-wave (PAW) technique (Blöchl, 1944). By means of projectors, 
the all-electron (i.e. not pseudised) wave functions of the valence electrons are 
reconstructed. This is the method of choice nowadays in many cases. It has been applied 
for Fe and alloys as well as actinide materials, where the computationally cheaper ultra-
soft pseudopotentials are not accurate enough (Kresse, Furthmüller, 1996). 

DFT codes also differ in their use of periodic boundary conditions or cluster approach. In 
the latter case, a cluster of atoms, possibly surrounded by compensating charges, is usually 
treated in a localised basis set. In the former case a unit cell is given, which makes the 
approach naturally suited for the study of crystal structures. The periodic wave functions 
in a crystal can be expanded in plane waves whose wave vectors are the reciprocal lattice 
vectors of the crystal. Plane waves are therefore a natural choice of basis for periodic 
structures, although many codes very successfully use also local orbital approaches in this 
case. 

Periodic systems have a real space (infinite number of electrons) and a reciprocal space 
representation (infinite number of k-points), and codes rely on both representations. 
Numerical scheme exists that limit the number of k-points that are necessary; metals in 
particularly require a dense k-points coverage. 

Some of the most popular codes used by the nuclear materials community are briefly 
described in the following without any claim for completeness: 

WIEN2k (Blaha et al., 1990; Schwarz, Blaha, 2003) uses a combination of atomic-like 
functions in the regions around the atoms and plane waves for the interstitial regions. The 
full description of the basis set is “(L)APW+lo”, for (Linearised) Augmented Plane Wave 
plus Localised Orbitals (Cottenier, 2013). This approach is a “full potential”, 
computationally demanding all-electron approach that does not call on pseudopotentials, 
and is thereby one of the most accurate ones available. This can be crucial, if properties 
sensitive to the wave functions near the core are required, like spin-orbit coupling 
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(Laskowski et al., 2004). It is often used for benchmarking other DFT codes using 
pseudopotentials or PAWs (Lejaeghere et al, 2016). 

VASP (Kresse, Furthmüller, 1996) is a plane waves code with a choice of ultra-soft 
pseudopotentials, and also a PAW implementation (Kresse, Joubert, 1999). The latter has 
been a popular choice for Fe-alloys. VASP is probably the most popular DFT code for the 
modelling of nuclear materials. 

ABINIT (Gonze et al., 2005) is, by contrast to VASP, a freely available code which offers 
comparable capabilities. 

Castep (Clark et al., 2005) is a pseudopotential plane waves code which includes a module 
for the ab-initio determination of Nuclear Magnetic Resonance parameters (Pickard, Mauri, 
2001). 

SIESTA (Soler et al., 2005) is a pseudopotential method using atom-centred basis sets in 
periodic systems. Some caution is needed when using the code's ultra-soft pseudopotentials 
in iron magnetic systems. The efficient basis sets, however, allow for calculations of 
relatively large systems compared to other approaches. 

Dmol3 (Delley, 1990) uses numerical atomic orbitals as basis sets. The code has both all-
electron and pseudopotential capabilities, and an implementation of the scalar relativistic 
all-electron approach. 

CP2K is a freely available code employing a hybrid basis set of Gaussian functions and 
plane waves basis (GPW) (Lippert, Hutter, Parrinello, 1997). It provides also a Gaussian 
Augmented Plane Waves (GAPW) implementation (Lippert, Hutter, Parrinello, 1999) 
which allows for all-electron calculations (Krack, Parrinello, 2000). The hybrid basis set 
approach enables a Kohn-Sham calculation that scales linearly with the system size (Van 
de Vondele et al., 2005), like for the SIESTA code. CP2K has been applied for nuclear fuel 
materials like UO2 (Krack, 2015), but it provides also, besides the DFT module 
CP2K/QUICKSTEP, (Van de Vondele et al., 2005) the force field implementation 
CP2K/FIST (Bertolus et al., 2015).  

The accuracy of the results in general will depend on the choice of functionals, and the 
suitability of the PAW or pseudopotentials used. Moreover, the number of plane waves, or 
the choice of localised basis functions, must be tested thoroughly, as well as the density of 
k-points, and supercell size when relevant. Unconverged results are totally meaningless, 
irrespective of the accuracy of the method. One should carefully differentiate between 
deficiencies of the selected DFT approach and shortcomings of the employed code and the 
corresponding input parameter settings. 

1.5. Scope of density functional theory 

DFT determines the ground state of a collection of atoms. As such, it is therefore a zero 
Kelvin formalism. To this day, the number of atoms considered is of the order of 1 000, 
with 200-300 typical for supercell alloys system. We describe in the following section only 
the properties most routinely determined in the contest of multi-scale modelling in nuclear 
materials. 

The self-consistent result of the Kohn-Sham equations gives the density as a function of 
position and the total energy of the system. So the most direct application of DFT is the 
total energy comparison between different atomic arrangements. Energy differences 
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converge faster with respect to the basis set quality than absolute energies and in some 
cases benefit from cancellations of systematic errors. 

The determination of forces on the atoms, formally the variation of the energy with respect 
to the nuclei positions, is implemented in most codes. Most will also have an algorithm 
whereby positions of the nuclei are modified at constant volume until the forces on the 
atoms are as small as desired. This ionic relaxation will usually drive the system into a 
local minimum, with no guarantee of having reached a global minimum. When starting 
from a reasonable geometry and using an appropriate functional, bond lengths comparisons 
with experiments are nonetheless accurate to the order of the percent. 

Full structure optimisations, including volume relaxation, are also routinely implemented. 
These algorithms are based on the expression of the macroscopic stress tensor in the DFT 
formalism. Volume relaxation, however, has to be tackled carefully. The k-points 
integration accuracy varies with volume changes, so that the density of k-points has to be 
sufficient across the volume range. Incomplete basis sets introduce an error in the stress 
tensor, called “Pulay stress”. In the case of plane waves, varying the volume will effectively 
change discontinuously the quality of the basis set. These problems can be reduced by using 
a sufficiently large basis set. It is often recommended to perform first a constant volume 
cell shape relaxation, then to fit an equation of state through the total energies at different 
volumes. That fit also gives the bulk modulus. Comparisons with experiments show that 
the lattice parameters can agree with the experimental values to the order of the percent. 

Elastic constants can also be deduced from DFT. They are calculated from the stress tensors 
of several structure optimisations performed under well-chosen strains, which will depend 
on the symmetry of the crystal. Linear elastic constants can be determined within 10% of 
the experimental values. 

The interatomic force constants, formally the derivatives of the force with respect to nuclei 
positions, are not directly measured quantities. They are often determined in the so-called 
“frozen phonon” method, whereby the total energy versus displacements is calculated. 

Relativistic effects are not explicitly taken into account in Hamiltonian (2), nor are the spin-
orbit interactions related to such effects. The relativistic effects are limited to regions near 
the core, and can be taken into account at the level of the pseudopotentials. In all-electron 
codes the core electrons are usually treated fully relativistic using scalar-relativistic wave 
functions, and the spin-orbit coupling is calculated for valence electrons in a second-
variational procedure. 

1.6. The use of density functional theory in nuclear materials research 

The role of DFT in the multi-scale approach is two-fold: to generate data for MD empirical 
potential parametrisation, and to investigate structures and provide measurable quantities 
for model validation. 

MD empirical potentials are parametrised and adjusted on equilibrium properties obtained 
by DFT. These are typically equilibrium bond lengths, elastic constants and cohesive 
energy per atom. For the particular purpose of nuclear materials, point defect formation 
energies should also be calculated. This is done usually by the {\it supercell} technique. 
The defects are placed at the centre of a large supercell built from repeated blocks of the 
original unit cell. The size of the supercell must be large enough that the defects are 
effectively isolated from their images across the periodic boundaries. 
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DFT is also the indicated method for the investigations of electronic, structural and 
magnetic properties. Partial density of states is used to analyse the effect of impurities 
(Klaver, Drautz, Finnis, 2006). Spin-dependent calculations are also used to identify phase 
stability in magnetic materials and structural aspects like clustering of impurities (Olsson, 
Klaver, Domain, 2010). 

As hinted in the previous paragraph, some of the information delivered by DFT can be 
directly compared with experiments, like the lattice parameters. Others, like the interaction 
energies, can only, if at all, be compared to experiments via related measurable quantities. 
Structural information, for instance, can be obtained through spectroscopic measurement 
(Idhil et al., 2012). The migration energy along particular paths can be calculated by DFT 
(Domain, Becquart, Foct, 2004) and these values can be used as parameters for methods at 
larger length scales. Resistivity recovery measurements can give access to that information, 
but there are difficulties in assigning defects to particular binding energies. In many cases 
DFT and experiments are therefore part of the same model validation loop. 

1.7. Conclusions and outlook 

DFT allows the calculations of ground state properties from first principles. The 
applicability of this powerful approach is, however, limited to a relatively small number of 
atoms. The accuracy of DFT, within its own scope, is determined by that of the exchange-
correlation functional. No functional captures correctly all the properties usually required. 
In particular, the strongly-correlated effects have to be included as an extension to the DFT. 
Convergence of the results with respect to the controllable parameters of the calculations 
(size or type of the basis set, k-points sampling, and supercell size) should be done 
carefully. It is also essential to remember that ionic and volume relaxation may not express 
a global minimum. Moreover, the convergence to the ground state of magnetic systems is 
often extremely slow depending on the algorithm implemented. Nevertheless, it may still 
lead to the wrong magnetic state. 

Therefore, the accuracy of the DFT-determined values should always be evaluated 
critically, and should always be related to experimental measurements if possible. It may 
be worthwhile investigating the benefit versus computational cost of the newer exchange-
correlation functionals for some compounds, although the problem of strongly-correlated 
systems will likely remain restricted to empirical treatments in the near future. 

It is likely that the accuracy of molecular dynamics simulations depends more on the form 
of the potentials than on the absolute convergence and accuracy of the DFT parameters. 
However, in evaluating the quality of empirical potentials one should remember the 
limitations of the DFT on which they are based. 
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2.  Ab-Initio molecular dynamics 
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2.1. Introduction  

Computer simulations and molecular dynamics in particular, is a very powerful method to 
provide detailed and essentially exact information of classical many-body problems. With 
the advent of ab-initio molecular dynamics (AIMD), where the forces are computed on-
the-fly by accurate electronic structure calculations, the scope of either method has been 
greatly extended. This new approach, which unifies Newton’s and Schrödinger’s equations, 
allows for complex simulations without relying on any adjustable parameter. This review 
is intended to outline the basic principles as well as a survey of the field. Beginning with 
the derivation of Born-Oppenheimer molecular dynamics, the Car-Parrinello method as 
well as novel hybrid scheme that unifies best of either approach are discussed. The 
predictive power is demonstrated by a series of applications ranging from insulators to 
semiconductors and even metals in condensed phases. 

The geometric increase in performance of computers over last few decades, together with 
advances in applied physics and mathematics, has led to the birth of a new way of doing 
science that is in the intersection of theory and experiment. As a result, they are referred to 
as computational sciences and allow for computer experiments under perfectly controllable 
and reproducible conditions. In this way, computer simulations have been very successful 
in explaining a large variety of physical phenomena and guiding experimental work. In 
addition, it is even possible to predict new phenomena by conducting experiments in silico 
that would otherwise be too difficult, too expensive, or simply impossible to perform. 
However, by far the most rewarding outcome of computer simulations is the invaluable 
insight they provide into the behaviour and the dynamics of a system. The two most 
common algorithms for such studies are the Monte Carlo (MC) (Metropolis et al., 1953) 
and molecular dynamics (MD) (Alder, Wainwright, 1957; Rahman, 1964; Verlet, 1967] 
algorithm. The latter is simply the numerical solution of Newton’s equation of motion, 
which allows both equilibrium thermodynamic and dynamical properties of a system at 
finite temperature to be computed. Since it also provides a ’window’ onto the atomic real-
time evolution of the atoms, another role of MD is that of a computational microscope. 

One of the most challenging, but very important aspect of MD simulations is the calculation 
of the interatomic forces. In classical simulations, they are computed from empirical 
potential functions, which have been parametrised to reproduce experimental or accurate 
ab-initio data on small model systems. Even though great strides in elaborating these 
empirical potentials have been made, often the transferability to systems or regions of the 
phase diagram different from the ones to which they have been fitted is restricted. 
Furthermore, they are not able to simulate with sufficient predictive power chemical 
bonding processes that take place in many relevant systems. Eventually, some of the most 
important and interesting phenomena of modern physics and chemistry are intrinsically 
non-classical. Therefore, a first principle based approach, such as AIMD (Marx, Hutter, 
2009), where the forces are calculated on-the-fly from accurate electronic structure 
calculations, is very attractive since many of these limitations can in principle be removed. 
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However, the increased accuracy and predictive power of AIMD simulations comes at 
significant computational cost. For this reason, density functional theory (DFT) 
(Hohenberg, Kohn, 1964) is to date by far the most commonly employed electronic 
structure theory, but it is important to note that AIMD is a general concept that in principle 
can be used in conjunction with any electronic structure method. Nevertheless, the ab-initio 
approach is not without problems – the relevant energy scale is tiny, well below 𝑘𝑘B𝑇𝑇, and 
in particular the attainable length and time scales are still one of its major limitations. 

2.2. Molecular dynamics 

The mathematical task of MD is to evaluate the expectation value 〈𝒪𝒪〉 of an arbitrary 
operator 𝒪𝒪(𝑹𝑹,𝑷𝑷) with respect to the configurational Boltzmann distribution 

 〈𝒪𝒪〉 =
∫ 𝑑𝑑𝑹𝑹 𝑑𝑑𝑷𝑷 𝒪𝒪(𝑹𝑹,𝑷𝑷) 𝑒𝑒−𝛽𝛽𝛽𝛽(𝑹𝑹,𝑷𝑷)

∫ 𝑑𝑑𝑹𝑹 𝑑𝑑𝑷𝑷 𝑒𝑒−𝛽𝛽𝛽𝛽(𝑹𝑹,𝑷𝑷)  (1) 

where 𝛽𝛽 = 1 𝑘𝑘B⁄ 𝑇𝑇 is the inverse temperature. The total energy function 

 𝐸𝐸(𝑹𝑹,𝑷𝑷) = �
𝑃𝑃𝐼𝐼2

2𝑀𝑀𝐼𝐼

𝑁𝑁ion

𝐼𝐼=1

+ Φ(𝑹𝑹𝐼𝐼) (2) 

where the first term denotes the nuclear kinetic energy, Φ(𝑹𝑹𝐼𝐼) the potential energy 
function, 𝑁𝑁ion the number of ions and 𝑀𝑀𝐼𝐼 the corresponding masses, depends itself on 
nuclear positions 𝑹𝑹 and momenta 𝑷𝑷. 

One way to evaluate equation (1), at least in principle, is to directly solve such a high-
dimensional integral, whose integrand is very sharply peaked in many dimensions, by a 
uniform sampling using the MC algorithm. However, such an MC algorithm is very 
inefficient, if it would not be for importance sampling (Metropolis et al., 1953), which 
satisfies the sufficient detailed balance condition by rejections. 

On the other hand, assuming the ergodicity hypothesis, the thermal average 〈𝒪𝒪〉 can not 
only be determined as the ensemble average of a MC simulation, but using MD equally as 
a temporal average  

 〈𝒪𝒪〉 = lim
𝜏𝜏→∞

1
𝜏𝜏
�𝑑𝑑𝑑𝑑 𝒪𝒪(𝑹𝑹(𝑑𝑑),𝑷𝑷(𝑑𝑑)) (3) 

However, by propagating the classical many-body system in time according to Newton’s 
equation of motion, the ions are treated only classically; this approximation is usually 
negligible, except for very light atoms or low temperature, where nuclear quantum effects 
may be important and adopting a quantum formalism such as imaginary-time path integrals 
(Feynman, Hibbs, 1965; Ceperley, 1995) is required. 

Similar to MC, within MD some kind of importance sampling is naturally performed by 
preferentially visiting phase space of low potential energy. Furthermore, as denoted by the 
additional time dependence in equation (3), MD allows for additional insights from the 
ionic real-time evolution, at least in a statistical average sense. It is neither the intention, 
nor possible, to obtain ”exact” trajectories by MD due to the infamous Lyapunov 
instability, which states that slightly perturbed trajectories are intrinsically exponentially 
diverging with time. 
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The equipartition theorem 

 �
1
2
𝑀𝑀𝐼𝐼�̇�𝑹𝐼𝐼2� =

3
2
𝑘𝑘B𝑇𝑇 (4) 

where 𝑀𝑀𝐼𝐼 is the atomic mass, 𝑘𝑘B the Boltzmann constant and 𝑇𝑇 the instantaneous 
temperature, offers an elegant way to bridge the gap between molecular mechanics and 
thermodynamics. This opens the door to extract a vast variety of relevant static and 
dynamic, as well as transport properties from a MD simulation. 

Nevertheless, any computational resource is finite, which limits the time and length scales 
accessible by computer simulations. One way to partially bridge the gap between the 
microscopic size of the simulated system and the macroscopic reality is to introduce 
periodic boundary conditions. In this way surface effects are eliminated by effectively 
simulating an infinite system, albeit with a finite periodicity that is identical with the length 
𝐿𝐿 of the simulation cell. As a consequence, only phenomena whose characteristic 
correlation length is much smaller than 𝐿𝐿 can be simulated. By similar means only 
processes whose typical relaxation time is significantly smaller than the simulation time 𝜏𝜏 
can be studied. Even though great strides have been made to extend the time and length 
scales, it is apparent that techniques such as those reviewed here are clearly needed. 

2.3. An ab-initio potential 

In AIMD the forces 𝑭𝑭𝐼𝐼 = −∇𝑹𝑹𝐼𝐼Φ(𝑹𝑹𝐼𝐼) are determined on-the-fly using first-principles 
electronic structure methods. That means that AIMD is not relying on any adjustable 
parameter, but only on 𝑹𝑹𝐼𝐼, which constitutes its predictive power. However, finding the 
antisymmetric ground state eigenfunctions 𝜓𝜓0 of the corresponding many-body 
Hamiltonian at each MD step comes at a significant computational cost, which has to be 
carefully balanced against the size and sampling requirements of MD. 

2.3.1. The many-body Schrödinger equation 
Applying the so-called Born-Oppenheimer (BO) approximation (1927), which we have 
implicitly assumed in the preceding subsection, Φ(𝑹𝑹𝐼𝐼) can written as 

 Φ(𝑹𝑹𝐼𝐼) = ⟨𝜓𝜓0|ℋ𝑒𝑒({𝒓𝒓𝑖𝑖};𝑹𝑹𝐼𝐼)|𝜓𝜓0⟩ + 𝐸𝐸𝐼𝐼𝐼𝐼(𝑹𝑹𝐼𝐼) (5) 

where ℋ𝑒𝑒({𝒓𝒓𝑖𝑖};𝑹𝑹𝑖𝑖) is the electronic many-body Hamiltonian, that depend on the electronic 
co-ordinates {𝒓𝒓𝑖𝑖} and parametrically on 𝑹𝑹𝐼𝐼. Essentially, the BO approximation allows for 
a product ansatz of the total wavefunction consisting of the nuclear and electronic 
wavefunctions. Due to the large separation of the nuclear and electronic masses, the 
electrons can be expected to be in its instantaneous equilibrium with the much heavier 
nuclei, so that the electronic subsystem can be treated independently at constant 𝑹𝑹𝐼𝐼. 
Nevertheless, we are left with a formidable task to solve the electronic, non-relativistic, 
time-independent, many-body Schrödinger equation 

 ℋ𝑒𝑒({𝒓𝒓𝑖𝑖};𝑹𝑹𝑖𝑖) 𝜓𝜓0({𝒓𝒓𝑖𝑖}) = 𝜀𝜀0(𝑹𝑹𝐼𝐼) 𝜓𝜓0({𝒓𝒓𝑖𝑖}) (6) 

which is a high-dimensional, non-linear eigenvalue problem, with eigenfunctions 𝜓𝜓0({𝒓𝒓𝑖𝑖}) 
and eigenvalues 𝜀𝜀0(𝑹𝑹𝐼𝐼), respectively. To visualise the complexity of equation (6) let us 
consider the following Gedankenmodell to represent the solution 𝜓𝜓0({𝒓𝒓𝑖𝑖}) on a real-space 
grid, where each co-ordinate is discretised by 100 mesh points. Ignoring spin and taking 
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𝜓𝜓0({𝒓𝒓𝑖𝑖}) to be real, for 𝑁𝑁𝑒𝑒 electrons 106𝑁𝑁𝑒𝑒  grid points are required, so that the solution of 
a single Si atom would require more grid points than the number of electrons in the whole 
universe, not to mention solving such a large non-linear eigenvalue problem. 

2.3.2. Density functional theory 
Fortunately, this curse of dimensionality can be ingeniously bypassed by the use of DFT, 
which is based on two celebrated papers of Hohenberg, Kohn and Sham (1964; 1965). The 
former, the so-called Hohenberg-Kohn (HK) theorem, proves the existence of a one-to-one 
mapping between the ground state density 𝜌𝜌0(𝒓𝒓) and an external potential 𝑣𝑣(𝒓𝒓). In this 
vain, 𝜌𝜌0(𝒓𝒓), which depends on just three electronic degrees of freedom, is designated as 
the principal quantity rather than the 3𝑁𝑁𝑒𝑒-dimensional many-body wavefunction. As a 
consequence, the nondegenerate ground state wavefunction 𝜓𝜓0({𝒓𝒓𝑖𝑖}) = 𝜓𝜓[𝜌𝜌0(𝒓𝒓)] and 
likewise ℋ𝑒𝑒[𝜌𝜌0(𝒓𝒓)] are both unique functionals of 𝜌𝜌0(𝒓𝒓), just as the ground state energy 

 𝐸𝐸0 = 𝐸𝐸DFT[𝜌𝜌0(𝒓𝒓)] = ⟨𝜓𝜓[𝜌𝜌0(𝒓𝒓)|ℋ𝑒𝑒[𝜌𝜌0(𝒓𝒓)]|𝜓𝜓[𝜌𝜌0(𝒓𝒓)⟩ (7) 

The latter obeys the variational property 

 𝐸𝐸DFT[𝜌𝜌0] = ⟨𝜓𝜓0|ℋ𝑒𝑒|𝜓𝜓0⟩ ≤ ⟨𝜓𝜓′|ℋ𝑒𝑒|𝜓𝜓′⟩ = 𝐸𝐸DFT[𝜌𝜌′] (8) 

for which equality holds if and only if 𝜌𝜌0 = 𝜌𝜌′. As a consequence equation (6) can be solved 
not only by iteratively diagonalising ℋ𝑒𝑒[𝜌𝜌] within a self-consistent field (SCF) procedure, 
but equally by minimising the quantum expectation value of ℋ𝑒𝑒[𝜌𝜌]: 

 𝐸𝐸DFT[𝜌𝜌0] = min
𝜓𝜓

 ⟨𝜓𝜓|ℋ𝑒𝑒|𝜓𝜓⟩ = min
𝜌𝜌

 ⟨𝜓𝜓[𝜌𝜌]|ℋ𝑒𝑒[𝜌𝜌]|𝜓𝜓[𝜌𝜌]⟩ = min
𝜌𝜌
𝐸𝐸DFT [𝜌𝜌] (9) 

In principle the minimisation has to be performed under the constraint that 𝜌𝜌(𝒓𝒓) is 𝑁𝑁-
representable, i.e. that it is arising from an antisymmetric 𝑁𝑁-body wavefunction 𝜓𝜓({𝒓𝒓𝑖𝑖}). 
Luckily, this had been solved, and it can be demonstrated that any single-particle density 
can be written in terms of an antisymmetric many-body wavefunction (Gilbert, 1975; 
Harriman, 1981). On the contrary, for the 𝑣𝑣-representability problem, which states that 
𝜌𝜌(𝒓𝒓) is the ground state density of a local potential 𝑣𝑣(𝒓𝒓), no such general solution is known. 
The HK theorem just guarantees that there cannot be more than one potential for each 
density, but does not exclude the possibility that there is no potential realising that density. 
It is only known for discretised systems that every density in interacting ensemble is v-
representable. Interestingly, the constructive proof of Levy and Lieb (Levy, 1982; Leib, 
1983) shows that for an interacting system v-representability is not required for the proof 
of the HK theorem. 

For the sake of simplicity in the following I will throughout assume atomic units and 
confine myself to the physical relevant Coulomb system, for which 

 ℋ𝑒𝑒 =
1
2
�∇𝑖𝑖2
𝑁𝑁𝑒𝑒

𝑖𝑖=1

+ �
1

�𝒓𝒓𝑖𝑖 − 𝒓𝒓𝑗𝑗�𝑖𝑖<𝑗𝑗

+ �
𝑍𝑍𝐼𝐼

|𝑹𝑹𝐼𝐼 − 𝒓𝒓𝑖𝑖|𝐼𝐼,𝑖𝑖

= 𝑇𝑇� + 𝑈𝑈� + 𝑉𝑉�  (10) 

Where 𝑇𝑇�  is the kinetic energy operator of the electrons, while 𝑈𝑈� is the electron-electron 
interaction and 𝑉𝑉� = ∑ 𝑣𝑣(𝒓𝒓𝑖𝑖)𝑖𝑖  the electron-ion operator. The former two operators are 
universal and independent of the system, while the latter is system dependent, or non-
universal. DFT explicitly recognises that it is indeed the potential 𝑣𝑣(𝒓𝒓), which distinguishes 
non-relativistic Coulomb systems and offers a prescription how to deal with 𝑇𝑇� and 𝑈𝑈� once 
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and for all (Capelle, 2006). Hence, even at this stage based on nothing but the HK theorem, 
DFT is already of some practical use without having to solve the many-body Schrödinger 
equation and without having to make a single-particle approximation. In principle it should 
be even possible to calculate all observables, since the HK theorem guarantees that they 
are all functionals of 𝜌𝜌(𝒓𝒓). Presuming the availability of physical sound and accurate 
approximations one can write 

 𝐸𝐸DFT[𝜌𝜌(𝒓𝒓)] = 𝑇𝑇[𝜌𝜌(𝒓𝒓)] + 𝑈𝑈[𝜌𝜌(𝒓𝒓)] + 𝑉𝑉[𝜌𝜌(𝒓𝒓)] (11) 

In the so-called Thomas-Fermi (TF) approximation (Thomas, 1927; Fermi, 1927) the full 
electron-electron interaction energy is approximated by the Hartree energy 

 𝑈𝑈[𝜌𝜌(𝒓𝒓)] ≈ 𝑈𝑈𝐻𝐻[𝜌𝜌(𝒓𝒓)] =
1
2
�𝑑𝑑𝒓𝒓�𝑑𝑑𝒓𝒓′  

𝜌𝜌(𝒓𝒓)𝜌𝜌(𝒓𝒓′)
|𝒓𝒓 − 𝒓𝒓′|

 (12) 

that is the electrostatic interaction energy of 𝜌𝜌(𝒓𝒓). In addition, the kinetic energy is 
approximated as 

 𝑇𝑇[𝜌𝜌(𝒓𝒓)] ≈ �𝑑𝑑𝒓𝒓 𝑑𝑑hom[𝜌𝜌(𝒓𝒓)] = 𝑇𝑇LDA[𝜌𝜌(𝒓𝒓)] (13) 

where 𝑑𝑑hom[𝜌𝜌(𝒓𝒓)] is the kinetic energy density of a homogeneous interacting system, 
which is also known as the local-density approximation (LDA). Due to the fact that the 
explicit form of 𝑑𝑑hom[𝜌𝜌(𝒓𝒓)] is only known for a non-interacting system, 𝑑𝑑hom[𝜌𝜌(𝒓𝒓)] is 
further estimated by the single-particle approximation 𝑑𝑑hom[𝜌𝜌(𝒓𝒓)], i.e. 

 𝑇𝑇LDA[𝜌𝜌(𝒓𝒓)] ≈ �𝑑𝑑𝑟𝑟 𝑑𝑑𝑠𝑠hom [𝜌𝜌(𝒓𝒓)] = 𝑇𝑇𝑠𝑠LDA[𝜌𝜌(𝒓𝒓)] (14) 

where 

 𝑑𝑑𝑠𝑠hom[𝜌𝜌(𝒓𝒓)] =
3

10
(3𝜋𝜋2)2/3𝜌𝜌(𝒓𝒓)5/3 (15) 

In the end the TF energy functional 
 𝐸𝐸TF[𝜌𝜌(𝒓𝒓)] = 𝑇𝑇𝑠𝑠LDA[𝜌𝜌(𝒓𝒓)] + 𝑈𝑈𝐻𝐻[𝜌𝜌(𝒓𝒓)] + 𝑉𝑉[𝜌𝜌(𝒓𝒓)] (16) 

implies not only the single-particle approximation to the full electron-electron interaction, 
but also the single-particle mean-field approximation 𝑇𝑇𝑠𝑠LDA[𝜌𝜌(𝒓𝒓)] to the exact kinetic 
energy of the inhomogeneous interacting system. As a consequence, all many-body 
correlation effects are neglected. 

However, the HK theorem predicates that they are again a functional of 𝜌𝜌(𝒓𝒓). The addition 
of an approximation to the exact exchange and correlation (XC) energy results in a formally 
exact theory, which is referred to as orbital-free DFT (Smargiassi, Madden, 1994). It is 
therefore important to recognise, that the HK theorem is nothing but the formal 
exactification of the TF approximation. Similarly, the Kohn-Sham (KS) (1965) scheme can 
be considered as the exactification of the self-consistent Hartree equations (HE) (1928), 
which differs only in the kinetic energy from the TF approximation. In fact, for the fictitious 
non-interacting system the kinetic energy is known exactly, even though only in terms of 
an explicit single-particle orbital functional, i.e. as an implicit density functional 

 𝑇𝑇𝑠𝑠[𝜌𝜌(𝒓𝒓)] = −
1
2
��𝑑𝑑𝒓𝒓 𝜓𝜓𝑖𝑖∗(𝒓𝒓)∇2𝜓𝜓𝑖𝑖(𝒓𝒓)
𝑁𝑁𝑒𝑒

𝑖𝑖=1

= 𝑇𝑇𝑠𝑠[{𝜓𝜓𝑖𝑖[𝜌𝜌(𝒓𝒓)]}] (17) 
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Here the fictitious single-particle orbitals, or simply KS orbitals, are denoted as 𝜓𝜓𝑖𝑖(𝒓𝒓). As 
we will see immediately they are eigenfunctions of a fictitious system, known as the KS 
system. It therefore should be noted that they differ from the single-particle orbitals used 
in wavefunction based methods and have no strict physical meaning, with two notable 
exceptions: at the presence of the exact XC functional for the special case of an isolated 
system with 𝑣𝑣(∞) = 0, (i) the highest occupied eigenvalue 𝜀𝜀𝑁𝑁 can be shown to be the 
negative of the exact, many-body, first ionisation potential including relaxation effects, and 
(ii) that the lowest unoccupied eigenvalue 𝜀𝜀𝑁𝑁+1 is the negative of the electron affinity. 
Beside these two exceptions, only the density has a real physical meaning and can be 
written in terms of 𝜓𝜓𝑖𝑖(𝒓𝒓) as 

 𝜌𝜌(𝒓𝒓) = � 𝑓𝑓𝑖𝑖𝜓𝜓𝑖𝑖(𝒓𝒓)𝜓𝜓𝑖𝑖∗(𝒓𝒓)
𝑁𝑁occ

𝑖𝑖=1

 (18) 

where 𝑁𝑁occ is the number of occupied orbitals and 𝑓𝑓𝑖𝑖 the occupation number of state 𝑖𝑖, so 
that 

 � 𝑓𝑓𝑖𝑖

𝑁𝑁occ

𝑖𝑖=1

= 𝑁𝑁𝑒𝑒 (19) 

Therewith, the KS energy functional is simply given by 

 

𝐸𝐸KS[𝜌𝜌(𝒓𝒓)] = 𝐸𝐸KS[{𝜓𝜓𝑖𝑖[𝜌𝜌(𝒓𝒓)]}]
= 𝑇𝑇𝑠𝑠[{𝜓𝜓𝑖𝑖[𝜌𝜌(𝒓𝒓)]}] + 𝑈𝑈𝐻𝐻[𝜌𝜌(𝒓𝒓)] + 𝑉𝑉[𝜌𝜌(𝒓𝒓)] + 𝐸𝐸XC[𝜌𝜌(𝒓𝒓)] 

= −
1
2
�𝑓𝑓𝑖𝑖 �𝑑𝑑𝒓𝒓 𝜓𝜓𝑖𝑖∗(𝒓𝒓)∇2𝜓𝜓𝑖𝑖(𝒓𝒓)
𝑁𝑁

𝑖𝑖=1

 

+
1
2
�𝑑𝑑𝒓𝒓𝑑𝑑𝒓𝒓′

𝜌𝜌(𝒓𝒓)𝜌𝜌(𝒓𝒓′)
|𝒓𝒓 − 𝒓𝒓′|

 

+�𝑑𝑑𝒓𝒓 𝑣𝑣ext(𝒓𝒓)𝜌𝜌(𝒓𝒓) + 𝐸𝐸XC[𝜌𝜌(𝒓𝒓)] 

  (20) 

where 𝐸𝐸XC[𝜌𝜌(𝒓𝒓)] = (𝑇𝑇[𝜌𝜌(𝒓𝒓)] − 𝑇𝑇𝑠𝑠[{𝜓𝜓𝑖𝑖[𝜌𝜌(𝒓𝒓)]}]) − (𝑈𝑈[𝜌𝜌(𝒓𝒓)] − 𝑈𝑈𝐻𝐻[𝜌𝜌(𝒓𝒓)] is the already 
mentioned and apparently unknown XC energy functional, whereas 𝑣𝑣XC(𝒓𝒓) is the 
corresponding XC potential. This definition also shows that a significant of part 𝐸𝐸XC[𝜌𝜌(𝒓𝒓)] 
is due to correlation effects of the kinetic energy that is known explicitly only in terms of 
the reduced two-particle density matrix (Dreizler, Gross, 1990). 

Since up to the exactifying term 𝐸𝐸XC[𝜌𝜌(𝒓𝒓)] equation (20) is identical to the HE, it is not 
surprising that the corresponding Euler-Lagrangian equation 

 �−
1
2
∇2 + 𝑣𝑣𝑠𝑠KS(𝒓𝒓)�𝜓𝜓𝑖𝑖(𝒓𝒓) = 𝜀𝜀𝑖𝑖𝜓𝜓𝑖𝑖(𝒓𝒓) (21) 

also results in a similar fictitious single-particle equation. Since 𝑣𝑣𝑠𝑠KS(𝒓𝒓) = 𝑣𝑣H(𝒓𝒓) +
𝑣𝑣XC(𝒓𝒓) + 𝑣𝑣(𝒓𝒓) is the effective potential of an artificial system, such that the ground state 
density and therewith the energy equals those of the true interacting many-body system.  
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This particular system is therefore called KS system, its effective potential KS potential 
and the resulting set of self-consistent equations are referred to as KS equations: 

 

�−
1
2
∇2 + 𝑣𝑣H(𝒓𝒓) + 𝑣𝑣XC(𝒓𝒓) + 𝑣𝑣(𝒓𝒓)�𝜓𝜓𝑖𝑖(𝒓𝒓) = 𝜀𝜀𝑖𝑖𝜓𝜓𝑖𝑖(𝒓𝒓) 

� 𝑓𝑓𝑖𝑖𝜓𝜓𝑖𝑖(𝒓𝒓)𝜓𝜓𝑖𝑖∗(𝒓𝒓)
𝑁𝑁occ

𝑖𝑖=1

= 𝜌𝜌(𝒓𝒓) 

𝛿𝛿𝐸𝐸XC[𝜌𝜌(𝒓𝒓)]
𝛿𝛿𝜌𝜌(𝒓𝒓)

= 𝑣𝑣XC(𝒓𝒓) 

(22) 

At self-consistency it is possible to express 𝐸𝐸0KS[𝜌𝜌(𝒓𝒓)] in terms of the single-particle KS 
eigenvalues 𝜀𝜀𝑖𝑖. Due to the fact that they are not the eigenvalues of the interacting many-
body system, but of fictitious non-interacting KS system, 𝐸𝐸0KS[𝜌𝜌(𝒓𝒓)] is merely the sum 
of 𝜀𝜀𝑖𝑖, but 

  𝐸𝐸0KS[𝜌𝜌(𝒓𝒓)] = � 𝑓𝑓𝑖𝑖𝜀𝜀𝑖𝑖

𝑁𝑁occ

𝑖𝑖

−
1
2
�𝑑𝑑𝒓𝒓𝑑𝑑𝒓𝒓′

𝜌𝜌(𝒓𝒓)𝜌𝜌(𝒓𝒓′)
|𝒓𝒓 − 𝒓𝒓′|

−�𝑑𝑑𝒓𝒓 𝑣𝑣XC(𝒓𝒓)𝜌𝜌(𝒓𝒓) + 𝐸𝐸XC[𝜌𝜌(𝒓𝒓)] (23) 

That is to say that in order to make genuine calculations the KS scheme systematically 
maps the full interacting many-body problem, with 𝑈𝑈�, onto an equivalent fictitious single-
body problem, with an effective potential operator 𝑉𝑉�KS = 𝑈𝑈�𝑠𝑠 + 𝑉𝑉�H + 𝑉𝑉�XC, but without 𝑈𝑈� 
(Capelle, 2006): 

 
TF

𝐸𝐸XC[𝜌𝜌(𝒓𝒓)]
�⎯⎯⎯⎯⎯⎯⎯� HK

𝑇𝑇𝑠𝑠[{𝜓𝜓𝑖𝑖[𝜌𝜌(𝒓𝒓)]}] ↓    ↓ 𝑇𝑇𝑠𝑠[{𝜓𝜓𝑖𝑖[𝜌𝜌(𝒓𝒓)]}]
HE

𝐸𝐸XC[𝜌𝜌(𝒓𝒓)]
�⎯⎯⎯⎯⎯⎯⎯� KS

 (24) 

2.3.3. The exchange and correlation functional 
In the previous subsection DFT has been outlined as an exact theory, presuming that the 
exact XC functional is known. Unfortunately, except for the uniform electron gas 
(Ceperley, Alder, 1980), this is not the case and one has to resort to more or less accurate 
approximations. For the sake of brevity, only the main physical principles rather than the 
various rungs of “Jacob’s ladder to heaven” (Tao et al., 2003) will be discussed here. 

On this account the following break-up is particularly convenient: 

 𝐸𝐸XC[𝜌𝜌(𝒓𝒓)] =
1
2
�𝑑𝑑𝒓𝒓�𝑑𝑑𝒓𝒓′  

𝜌𝜌(𝒓𝒓)𝜌𝜌XC(𝒓𝒓, 𝒓𝒓′)
|𝒓𝒓 − 𝒓𝒓′|

= 𝐸𝐸X[𝜌𝜌(𝒓𝒓)] + 𝐸𝐸C[𝜌𝜌(𝒓𝒓)] (25) 

where 𝐸𝐸X[𝜌𝜌(𝒓𝒓)] is the exchange energy due to Pauli repulsion, 𝐸𝐸C[𝜌𝜌(𝒓𝒓)] the electron 
correlation energy and 𝜌𝜌XC(𝒓𝒓, 𝒓𝒓′) = 𝜌𝜌X(𝒓𝒓, 𝒓𝒓′) + 𝜌𝜌C(𝒓𝒓, 𝒓𝒓′) the XC hole. The former is 
therefore the energy lowering due to the antisymmetry requirement on the wavefunction of 
a fermionic system and can be exactly calculated in terms of an explicit orbital or implicit 
density functional 

 𝐸𝐸X[𝜌𝜌(𝒓𝒓)] = −
1
2
�𝑑𝑑𝒓𝒓�𝑑𝑑𝒓𝒓′  

𝜓𝜓𝑖𝑖∗(𝒓𝒓)𝜓𝜓𝑗𝑗∗(𝒓𝒓′)𝜓𝜓𝑖𝑖(𝒓𝒓)𝜓𝜓𝑗𝑗(𝒓𝒓′)
|𝒓𝒓 − 𝒓𝒓′|

= 𝐸𝐸X[{𝜓𝜓𝑖𝑖[𝜌𝜌(𝒓𝒓)]}] (26) 
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Equation (26) is the so-called Hartree-Fock exchange energy, but with KS orbitals. 
However, the nonlocal form of the exact exchange energy comes at a considerable 
computational burden to solve four-centre integrals, which is about two orders of 
magnitude more expensive than is the case for local or semi-local approximations to the 
exact XC functional. The correlation energy accounts for the additional energy lowering, 
since electrons with opposite spins also avoid each other. However, contrary to the 
exchange part, no exact expression for 𝐸𝐸C[𝜌𝜌(𝒓𝒓)] is known, neither in terms of orbitals nor 
densities. 

Obviously, DFT would be of little use if one had to know 𝐸𝐸XC[𝜌𝜌(𝒓𝒓)] exactly, but luckily it 
is usually energetically substantially smaller than each of the remaining terms, which are 
known. One can thus hope that reasonable simple approximations to 𝐸𝐸XC[𝜌𝜌(𝒓𝒓)], will still 
allows for qualitatively correct estimates of 𝐸𝐸0[𝜌𝜌(𝒓𝒓)], without relying on additional 
adjustable parameters. 

2.4. Ab-initio molecular dynamics 

In the following let us assume that the potential energy function is calculated on-the-fly 
using DFT, so that Φ(𝑹𝑹𝐼𝐼) = 𝐸𝐸[{𝜓𝜓𝑖𝑖};𝑹𝑹𝐼𝐼] = 𝐸𝐸KS[{𝜓𝜓𝑖𝑖[𝜌𝜌(𝒓𝒓)]}] + 𝐸𝐸𝐼𝐼𝐼𝐼(𝑹𝑹𝐼𝐼). In any case, 
AIMD (Marx, Hutter, 2009; Car, Parrinello, 1985; Payne et al., 1992; Parinello, 1997; Car, 
2002; Tuckerman, 2002) comes in two fundamental flavours, which are outlined in this 
section. 

2.4.1. Born-Oppenheimer molecular dynamics 
In Born-Oppenheimer MD (BOMD) the potential energy 𝐸𝐸[{𝜓𝜓𝑖𝑖};𝑹𝑹𝐼𝐼] is minimised at every 
MD step with respect to {𝜓𝜓𝑖𝑖(𝒓𝒓)} under the holonomic orthonormality 
constraint �𝜓𝜓𝑖𝑖(𝒓𝒓)�𝜓𝜓𝑗𝑗(𝒓𝒓)� = 𝛿𝛿𝑖𝑖𝑗𝑗 . This leads to the following Lagrangian 

 ℒBO�{𝜓𝜓𝑖𝑖};𝑹𝑹𝐼𝐼 , �̇�𝑹𝐼𝐼� =
1
2
�𝑀𝑀𝐼𝐼�̇�𝑹𝐼𝐼2 − min

{𝜓𝜓𝑖𝑖}
𝐸𝐸[{𝜓𝜓𝑖𝑖};𝑹𝑹𝐼𝐼] +�Λ𝑖𝑖𝑗𝑗��𝜓𝜓𝑖𝑖�𝜓𝜓𝑗𝑗� − 𝛿𝛿𝑖𝑖𝑗𝑗�

𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑖𝑖=1

 (27) 

where Λ𝑖𝑖𝑗𝑗 is a Hermitian Lagrangian multiplier matrix. By solving the according Euler-
Lagrangian equations 

 

𝑑𝑑
𝑑𝑑𝑑𝑑�̇�𝑹𝐼𝐼

𝜕𝜕ℒ
𝜕𝜕�̇�𝑹𝐼𝐼

=
𝜕𝜕ℒ
𝜕𝜕𝑹𝑹𝐼𝐼

 

𝑑𝑑
𝑑𝑑𝑑𝑑�̇�𝑹

𝜕𝜕ℒ
𝜕𝜕⟨𝜓𝜓𝚤𝚤|̇

=
𝜕𝜕ℒ
𝜕𝜕⟨𝜓𝜓𝑖𝑖|

 
(28) 
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one obtains the associated equations of motion (EOM) 

 

𝑀𝑀𝐼𝐼�̈�𝑹𝐼𝐼2 = −∇𝑹𝑹𝐼𝐼 �min
{𝜓𝜓𝑖𝑖}

𝐸𝐸[{𝜓𝜓𝑖𝑖};𝑹𝑹𝐼𝐼] � ��𝜓𝜓𝑖𝑖�𝜓𝜓𝑗𝑗�−𝛿𝛿𝑖𝑖𝑖𝑖�
�  

= −
𝜕𝜕𝐸𝐸
𝜕𝜕𝑹𝑹𝐼𝐼

+ �Λ𝑖𝑖𝑗𝑗
𝜕𝜕
𝜕𝜕𝑹𝑹𝐼𝐼

�𝜓𝜓𝑖𝑖�𝜓𝜓𝑗𝑗� − 2�
𝜕𝜕⟨𝜓𝜓𝑖𝑖|
𝜕𝜕𝑹𝑹𝐼𝐼

�
𝛿𝛿𝐸𝐸
𝛿𝛿⟨𝜓𝜓𝑖𝑖|

−�Λ𝑖𝑖𝑗𝑗|𝜓𝜓𝑗𝑗�
𝑗𝑗

�
𝑖𝑖

 
𝑖𝑖,𝑗𝑗

 

0 ≲ −
𝛿𝛿𝐸𝐸
𝛿𝛿⟨𝜓𝜓𝑖𝑖|

+�Λ𝑖𝑖𝑗𝑗|𝜓𝜓𝑗𝑗�
𝑗𝑗

 

= −𝐻𝐻�𝑒𝑒⟨𝜓𝜓𝑖𝑖| + �Λ𝑖𝑖𝑗𝑗|𝜓𝜓𝑗𝑗�
𝑗𝑗

 

(29) 

The first term on the right hand side (RHS) of equation (29) is the so-called Hellmann-
Feynman force. The second term, which is denoted as Pulay (1969), or wavefunction 
force 𝐹𝐹WF, is a constraint force due to the holonomic orthonormality constraint, and is non-
vanishing if and only if the basis functions 𝜙𝜙𝑗𝑗 explicitly depend on 𝑹𝑹𝐼𝐼. The final term stems 
from the fact that, independent of the particular basis set, there is always an implicit 
dependence on the atomic positions through the expansion coefficient 𝑐𝑐𝑖𝑖𝑗𝑗(𝑹𝑹𝐼𝐼) within the 
common linear combination of atomic orbitals 𝜙𝜙𝑖𝑖: 

 𝜓𝜓𝑖𝑖(𝑹𝑹𝐼𝐼) = �𝑐𝑐𝑖𝑖𝑗𝑗(𝑹𝑹𝐼𝐼)𝜙𝜙𝑗𝑗
𝑗𝑗

 (30) 

The second factor stems from the assumption that the KS orbitals are real, which is an 
inessential simplification. Nevertheless, the whole term vanishes whenever 𝜓𝜓𝑖𝑖(𝑹𝑹𝐼𝐼) is an 
eigenfunction of the Hamiltonian within the subspace spanned by the not necessarily 
complete basis set (Almlöf, Helgaker, 1981; Scheffler, Vigneron, Bachelet, 1985). Note, 
that this is a much weaker condition than the original Hellmann-Feynman theorem 
(Hellman, 1937; Feynman, 1939), which we hence have not availed throughout the 
derivation, except as an eponym for the first RHS term of equation (29). However, as the 
KS functional is non-linear, eigenfunctions of its Hamiltonian 𝐻𝐻�𝑒𝑒 are only obtained at exact 
self-consistency, which is why the last term of equation (29) is also referred to as non-self-
consistent force 𝐹𝐹NSC. Unfortunately, in any numerical calculation this cannot be assumed, 
which results in immanent inconsistent forces and to the inequality of equation (29). 
Neglecting either 𝐹𝐹WF or 𝐹𝐹NSC, i.e. applying the Hellmann-Feynman theorem to a non-
eigenfunction leads merely to a perturbative estimate of the generalised forces (Bendt, 
Zunger, 1983) 

 𝐹𝐹 = 𝐹𝐹HF + 𝐹𝐹WF + 𝐹𝐹NSC (31) 

which, contrary to the energies, depends just linearly on the error in the electronic charge 
density. As a consequence, it is much more exacting to calculate accurate forces than total 
energies. However, as a corollary of the BO approximation, the electronic, as well as the 
ionic subsystems are adiabatically strictly separated from each other, and therefore does 
not entail any restrictions on the maximum possible integration time step, so that time steps 
up to the ionic resonance limit are feasible. This actually holds irrespective of the band gap, 
so, at least in principle, even metals can be straightforwardly treated.
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2.4.2. Car-Parrinello molecular dynamics 
In Car-Parrinello MD (CPMD) (1985), a coupled electron-ion dynamics is performed, in 
which the electronic degrees of freedom are added to the Lagrangian as classical ones: 

 
ℒCP�{𝜓𝜓𝑖𝑖};𝑹𝑹𝐼𝐼 , �̇�𝑹𝐼𝐼� =

1
2
𝜇𝜇��𝜓𝜓𝚤𝚤̇ �𝜓𝜓𝚤𝚤̇ � +

𝑀𝑀

𝑖𝑖=1

1
2
�𝑀𝑀𝐼𝐼�̇�𝑹𝐼𝐼2
𝑁𝑁

𝑖𝑖=1

− 𝐸𝐸[{𝜓𝜓𝑖𝑖};𝑹𝑹𝐼𝐼] 

+�Λ𝑖𝑖𝑗𝑗��𝜓𝜓𝑖𝑖�𝜓𝜓𝑗𝑗� − 𝛿𝛿𝑖𝑖𝑗𝑗�
𝑖𝑖,𝑗𝑗

 
(32) 

Once again, applying the Euler-Lagrangian equations equation (28) entails an EOM, where 
the electronic degrees of freedom inhere an artificial inertia 𝜇𝜇 and are propagated within a 
fictitious Newtonian dynamics, such that the electrons follows the ions adiabatically: 

 

𝑀𝑀𝐼𝐼�̈�𝑹𝐼𝐼2 = −∇𝑹𝑹𝐼𝐼 �𝐸𝐸[{𝜓𝜓𝑖𝑖};𝑹𝑹𝐼𝐼]� ��𝜓𝜓𝑖𝑖�𝜓𝜓𝑗𝑗�−𝛿𝛿𝑖𝑖𝑖𝑖�
� 

= −
𝜕𝜕𝐸𝐸
𝜕𝜕𝑹𝑹𝐼𝐼

+ �Λ𝑖𝑖𝑗𝑗
𝜕𝜕
𝜕𝜕𝑹𝑹𝐼𝐼

�𝜓𝜓𝑖𝑖�𝜓𝜓𝑗𝑗�
𝑖𝑖,𝑗𝑗

 

𝜇𝜇𝜓𝜓𝚤𝚤̈ (𝒓𝒓, 𝑑𝑑) = −
𝛿𝛿𝐸𝐸
𝛿𝛿⟨𝜓𝜓𝑖𝑖|

+ �Λ𝑖𝑖𝑗𝑗|𝜓𝜓𝑗𝑗�
𝑗𝑗

 

= −𝐻𝐻�𝑒𝑒⟨𝜓𝜓𝑖𝑖| + �Λ𝑖𝑖𝑗𝑗|𝜓𝜓𝑗𝑗�
𝑗𝑗

 

(33) 

As a consequence of the BO approximation, the high frequency oscillations of equation 
(33) vanishes on ionic time scales, so that 𝜓𝜓𝚤𝚤̈ ≃ 0. Hence, similar to Ehrenfest dynamics 
(1927), the total derivative of the instantaneous, rather than the fully minimised, 
expectation value �Ψ0�𝐻𝐻�𝑒𝑒�Ψ0� of the Hamiltonian yields the forces that are consistent with 
the corresponding energies. This means, that owing to the absence of necessity to fully 
minimise the energy functional but rather to simply evaluate it at the instantaneous time 
step, 𝐹𝐹NSC is identical to zero by its very definition. Given a sufficiently small fictitious 
mass, the constant of motion is strictly conserved and errors in the forces are negligible, in 
particular if the ionic masses are renormalised by a constant mass tensor (Blöchl, Parrinello, 
1992; Blöchl, 1994; Tangney, Scandolo, 2002). In this respect, CPMD combines most of 
the advantages of BO and Ehrenfest MD in the sense that the KS functional are only 
evaluated. There is no need to repeatedly solve it either by diagonalisation or, equivalently, 
iterative minimisation. However, due to the finite accuracy of any integrator, the holonomic 
orthonormality constraint of the orbitals has to be explicitly enforced. In order to ensure an 
adiabatic energy-scale separation of the nuclear and the electronic degrees of freedom and 
to prevent energy transfer between them, the ionic phonon frequency 𝜔𝜔𝐼𝐼 has to be much 
smaller than the electronic analogue 𝜔𝜔𝑒𝑒. As had been suggested in an eminent 
phenomenological study of Pastore and Buda (1991) 

 𝜔𝜔𝑒𝑒 ∝ �
Δ𝐸𝐸gap
𝜇𝜇

 (34) 
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As a consequence, the maximum integration time step Δ𝑑𝑑max depends on the inertia 
like √𝜇𝜇. The same also holds for the deviation from the BO surface (Borbemann, Schütte, 
1998) 

 �𝜓𝜓𝜇𝜇(𝑟𝑟, 𝑑𝑑) − 𝜓𝜓0(𝑟𝑟, 𝑑𝑑)� ≤ 𝐶𝐶�𝜇𝜇 (35) 

Therefore, the fictitious mass, although physically completely meaningless, acts as a 
continuous slider which allows to adjust any desired degree of accuracy, in terms of 
deviation from the BO surface, reciprocal to the computational efficiency in a well 
controlled manner. But if a metallic system is treated, due to the fact that Car-Parrinello 
(CP) states are strictly not KS eigenstates, equation (34) is identical to zero and either a 
thermostat for the electronic degrees of freedom (Blöchl, Parrinello, 1992; Sprik, 1991; 
Blöchl, 2002) to counterbalance the exchange of energy, or an extended functional with 
fractional occupation numbers (Mermin, 1965; Gillan, 1989; Alavi et al., 1994; Marzari, 
Vanderbilt, Payne, 1997) is necessary. In the end drawing a proper conclusion, if either 
BOMD or CPMD is to be favoured, turns out to be very subtle (Tangney, 2006) and 
depends largely on the definition of accuracy and on the particular application. 

2.5. An efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer 
molecular dynamics 

Even though DFT-based AIMD has been very successful in describing a large variety of 
physical phenomena, its computational cost has limited the attainable length and time 
scales in spite of substantial progress. For a while it was believed that linear scaling 
methods (Yang, 1991; Galli, Parrinello; 1992; Goedecker, 1999) could have offered a 
solution. Unfortunately, the crossover point at which linear scaling methods become 
advantageous has remained fairly large, especially if high accuracy is needed (Ceriotti, 
Kühne, Parrinello, 2008, 2009). Therefore, it would be very desirable to accelerate ab-initio 
simulations with up to thousands of atoms, such that simulations as long as a few 
nanoseconds can be routinely performed, thus making completely new phenomena 
accessible to AIMD simulations. BOMD, in which the DFT functional is fully minimised 
at each MD time step, does not seem to offer much room for further improvement. For this 
reason, recently another direction has been followed to improve the efficiency at current 
system sizes. In the spirit of CPMD (Car, Parrinello, 1985), some form of dynamics for the 
electronic degrees of freedom is implemented, which automatically keeps the system close 
to the instantaneous BO surface, but at variance to the original proposal in a localised 
orbital representation (Iyengar et al., 2001; Sharma, Wu, Car, 2003; Herbert, Head-Gordon, 
2004). The acceleration stems on the one hand from this more compact description of the 
electronic wavefunctions, but is mainly due to the ability to reduce or even fully bypass the 
aforementioned SCF cycle. Nevertheless, just like in CPMD, these methods suffer from 
rather short integration time steps. However, rather recently a novel Car-Parrinello-like 
approach to BOMD has been proposed, which overcomes this limitation and combines the 
accuracy and long-time steps of BOMD with the efficiency of CPMD (Kühne et al., 2007). 

From now on the general case will be considered, where the DFT KS orbitals are expanded 
in a non-orthogonal basis set. Let 𝑀𝑀 be the dimension of the Hilbert space, i.e. the number 
of basis functions, and 𝑺𝑺 the 𝑀𝑀 × 𝑀𝑀 overlap matrix. As usual the expansion coefficients of 
the 𝑁𝑁 lowest occupied orbitals are arranged in a rectangular 𝑀𝑀 × 𝑁𝑁 matrix 𝑪𝑪. The density 
matrix can then be written as 𝑷𝑷 = 𝑪𝑪𝑪𝑪𝑇𝑇 and must obey the idempotency condition 𝑷𝑷 = 𝑷𝑷𝑺𝑺𝑷𝑷 
that is due to the fermionic nature of electrons, which compels the wavefunction to be 
antisymmetric in order to meet the Pauli Exclusion Principle. The potential energy surface 
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on which the ions move is defined by the minimum of an appropriately chosen energy 
functional 𝐸𝐸DFT[𝑪𝑪,𝑹𝑹𝐼𝐼], which is expressed as a functional of 𝑪𝑪 and a function of the ionic 
co-ordinates 𝑹𝑹𝐼𝐼. In this notation the BO EOM reads as follows: 

 𝑀𝑀𝐼𝐼�̈�𝑹𝐼𝐼2 = −∇𝐼𝐼 min
𝐂𝐂
𝐸𝐸DFT [𝑪𝑪,𝑹𝑹𝐼𝐼] (36) 

where the search for the minimum is restricted to the 𝑪𝑪’s that satisfy the orthonormality 
condition 𝑪𝑪𝑇𝑇𝑺𝑺𝑪𝑪 = 𝑰𝑰, which is equivalent to imposing the idempotency condition on 𝑷𝑷. As 
before, the forces of equation (36) can be divided into three contributions, (i) the Hellmann-
Feynman forces (Hellmann, 1937; Feynman, 1939), (ii) the Pulay forces (1969), which are 
present whenever the basis set depends on the ionic positions, and (iii) a residual term 
(Bendt, Zunger, 1983), which is non-zero except when full self-consistency is reached. The 
last term leads inevitably to poor energy conservation in BOMD unless a very tight 
convergence criterion is imposed. In Car-Parrinello-like approaches this is circumvented 
by the design of a coupled electron-ion dynamics, which maintains the system very close 
to the BO surface, but at the cost of small integration time steps. 

2.5.1. Density matrix propagation 
Based on ideas of the original CP approach it is possible to design an improved dynamics 
for the coupled system of electrons and ions (Kühne et al., 2007). However, contrary to the 
original scheme, this novel method is not expressed as an explicit EOM for the 𝑪𝑪’s, but 
rather as an integration scheme for the electronic degrees of freedom. The knowledge of 
the previous 𝐾𝐾 values of 𝑪𝑪(𝑑𝑑𝑛𝑛−𝑙𝑙), where 𝑙𝑙 ∈ [1,𝐾𝐾], determines the value of 𝑪𝑪(𝑑𝑑𝑛𝑛), such 
that at any instant of time the 𝑪𝑪’s are as close as possible to the instantaneous ground state. 
As for the short-term integration of the electronic degrees of freedom, accuracy is crucial 
so a highly accurate and efficient algorithm is required. Therefore, here the always stable 
predictor-corrector (ASPC) method of Kolafa (2004, 2005) has been selected. This scheme 
was originally devised to deal with classical polarisation, so that care must be taken that 
during the evolution the idempotency condition is always satisfied. The modified predictor 

 𝑪𝑪𝑝𝑝(𝑑𝑑𝑛𝑛) ≅ � (−1)𝑚𝑚+1𝑚𝑚
� 2𝐾𝐾
𝐾𝐾−𝑚𝑚�
�2𝐾𝐾−2𝐾𝐾−1 �

 𝑪𝑪(𝑑𝑑𝑛𝑛−𝑚𝑚)𝑪𝑪𝑇𝑇(𝑑𝑑𝑛𝑛−𝑚𝑚)�������������
𝑷𝑷(𝑡𝑡𝑛𝑛−𝑚𝑚)

𝐾𝐾

𝑚𝑚=1

𝑺𝑺(𝑑𝑑𝑛𝑛−𝑚𝑚)𝑪𝑪(𝑑𝑑𝑛𝑛−1) (37) 

uses the extrapolated contra-covariant density matrix 𝑷𝑷𝑺𝑺 as an approximate projector on to 
the occupied subspace 𝑪𝑪(𝑑𝑑𝑛𝑛−1). In this way, the fact that the physically relevant contra-
covariant density matrix 𝑷𝑷𝑺𝑺 evolves much more smoothly and is therefore substantially 
easier to predict than 𝑪𝑪 is ideally utilised. The modified predictor is followed by a corrector 
step to minimise the error and to further reduce the deviation from the instantaneous ground 
state. The corrector 

 𝑪𝑪(𝑑𝑑𝑛𝑛) = 𝜔𝜔min[𝑪𝑪𝑝𝑝(𝑑𝑑𝑛𝑛)] + (1 −𝜔𝜔)𝑪𝑪𝑝𝑝(𝑑𝑑𝑛𝑛)      with 𝜔𝜔 =
𝐾𝐾

2𝐾𝐾 − 1
 (38) 

consists only of a single preconditioned minimisation step min[𝑪𝑪𝑝𝑝(𝑑𝑑𝑛𝑛)] of a properly 
selected minimisation procedure. Apparently, the predictor can also be repeatedly applied, 
in which case the ground state is even more closely approached, but at the cost of additional 
electronic gradient calculations. However, as will be shown immediately in general this is 
not necessary. The numerical coefficients of equation (37) were selected in order to ensure 
time-reversibility up to 𝑂𝑂(ℎ𝐾𝐾+2) while 𝜔𝜔 was chosen to guarantee a stable relaxation 
towards the minimum. Due to the fact that the energy is invariant under unitary 
transformations within the subspace of occupied orbitals 𝑪𝑪, it must be ensured that this 
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time-dependent gauge transformation is not strongly changed by min[𝑪𝑪𝑝𝑝(𝑑𝑑𝑛𝑛)], as in this 
case continuity between the 𝑪𝑪’s may be lost. 

2.5.2. Electronic forces by orbital transformations 
Moreover, the minimisation scheme must be very efficient in bringing the system as close 
as possible to the instantaneous ground state and at the same time preserves the 
idempotency condition of the density matrix. For these reasons, the orbital transformation 
(OT) method of VandeVondele and Hutter (2003) has been chosen. Inspired by the form 
of the exponential transformation (Hutter, Parrinello, Vogel, 1994) an auxiliary variable X 
is introduced, to parameterise the occupied orbitals 

 𝑪𝑪(𝑿𝑿) = 𝑪𝑪𝑝𝑝(𝑑𝑑𝑛𝑛) cos(𝑼𝑼) + 𝑿𝑿𝑼𝑼−1 sin(𝑼𝑼) (39) 

where 𝑼𝑼 = (𝑿𝑿𝑇𝑇𝑺𝑺𝑿𝑿)1/2 and the variable 𝑿𝑿 has to obey the linear constraint 𝑿𝑿𝑇𝑇𝑺𝑺𝑪𝑪𝑝𝑝(𝑑𝑑𝑛𝑛) =
0. Under this condition 𝑪𝑪(𝑿𝑿) leads to an idempotent density matrix for any choice of 𝑿𝑿, 
provided that the reference orbitals 𝑪𝑪𝑝𝑝(𝑑𝑑𝑛𝑛) are orthonormal. Thus, any finite step along the 
preconditioned gradient direction will exactly fulfil the idempotency constraint by 
construction. Due to the linear constraint the minimisation with respect to 𝑿𝑿 is performed 
in an auxiliary tangent space. Since this space is linear, no curved geodesics must be 
followed, as is the case for variables such as 𝑪𝑪 that are nonlinearly constrained. In this way, 
large minimisation steps can be taken, especially if a good preconditioner is used (Gan, 
Haynes, Payne, 2000). In fact, using an efficient, idempotency conserving direct minimiser 
such as OT is decisive for the success of this approach. Since the ASPC integrator only 
approximately preserves the idempotency constraint, it sporadically has to be explicitly 
enforced, either by Cholesky decomposition or by single purification iterations (McWeeny, 
1960). 

2.5.3. Total energies and forces 
Having obtained the new wavefunction it is now possible to evaluate the energy and the 
nuclear forces, which are derived from the following approximate energy functional: 

 
𝐸𝐸PC[𝜌𝜌𝑝𝑝] = Tr [𝑪𝑪𝑇𝑇𝐻𝐻[𝜌𝜌𝑝𝑝]𝑪𝑪] −

1
2
�𝑑𝑑𝒓𝒓�𝑑𝑑𝒓𝒓′  

𝜌𝜌𝑝𝑝(𝒓𝒓)𝜌𝜌𝑝𝑝(𝒓𝒓′)
|𝒓𝒓 − 𝒓𝒓′|

 

−�𝑑𝑑𝒓𝒓𝑉𝑉XC[𝜌𝜌𝑝𝑝]𝜌𝜌𝑝𝑝 + 𝐸𝐸XC[𝜌𝜌𝑝𝑝] + 𝐸𝐸𝐼𝐼𝐼𝐼 
(40) 

where 𝜌𝜌𝑝𝑝 is the density associated with 𝑪𝑪𝑝𝑝(𝑑𝑑𝑛𝑛). 𝐸𝐸PC[𝜌𝜌] can be thought of as an 
approximation to the Harris-Foulkes functional (Harris, 1985; Foulkes, Haydock, 1989) 
and maintains the predictor-corrector flavour of this method. The validity of 𝐸𝐸PC[𝜌𝜌] 
depends only on the efficiency of the minimiser and on the quality of the propagation 
scheme. The ionic forces are calculated by evaluating the analytic gradient of 𝐸𝐸PC[𝜌𝜌] with 
respect to the nuclear co-ordinates. However, as Δ𝜌𝜌 = 𝜌𝜌 − 𝜌𝜌𝑝𝑝 ≠ 0, besides the usual 
Hellmann-Feynman and Pulay forces an extra term appears: 

 −�𝑑𝑑𝒓𝒓 ���
𝜕𝜕𝑉𝑉XC[𝜌𝜌𝑝𝑝]
𝜕𝜕𝜌𝜌𝑝𝑝 �Δ𝜌𝜌 + 𝑉𝑉𝐻𝐻[Δ𝜌𝜌]� (∇𝐼𝐼𝜌𝜌𝑝𝑝)� (41) 

where 𝜌𝜌 is the corrected density evaluated using 𝑪𝑪(𝑑𝑑𝑛𝑛) and 𝜌𝜌𝑝𝑝 is the predicted density 
calculated from 𝑪𝑪𝑝𝑝(𝑑𝑑𝑛𝑛). Using variational density functional perturbation theory (Putrino, 
Sebastiani, Parrinello, 2000; Benoit, Sebastiani, Parrinello, 2001), equation (41) can be 
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efficiently computed very similar to employing the coupled-perturbed KS scheme. 
However, due to the fact that usually only a single preconditioned minimisation step is 
performed, 𝑪𝑪(𝑑𝑑𝑛𝑛) is just an approximate eigenfunction of 𝐻𝐻[𝜌𝜌𝑝𝑝] within the subspace 
spanned by the finite basis set used. This leads to an insignificant error in the forces, 
provided that 𝑪𝑪(𝑑𝑑𝑛𝑛) is very close to the ground state. 

2.5.4. Modified Langevin equation 
The ability of this dynamics to maintain the system on the BO surface may vary 
considerably. It is essentially ideal in systems like water, but potentially somewhat less 
perfect in liquid Si at high temperature, where swift bonding and rebonding processes 
continuously take place. However, in all cases the dynamics is dissipative, most likely 
because the employed propagation scheme is not symplectic. Nevertheless, it is possible to 
rigorously remedy this downward drift if we assume that the forces arising from our 
dynamics 𝑭𝑭PC can be modelled as 𝑭𝑭PC = 𝑭𝑭BO − 𝛾𝛾𝐷𝐷�̇�𝑹𝐼𝐼, which, as we shall see immediately, 
is an excellent assumption. The value of the intrinsic friction coefficient 𝛾𝛾𝐷𝐷 does not need 
to be known but it can be bootstrapped by taking a cue from the work of Krajewski and 
Parrinello (2001). The canonical distribution is sampled by using the following Langevin-
type equation 

 𝑀𝑀𝐼𝐼�̈�𝑹𝐼𝐼 = 𝑭𝑭PC − 𝛾𝛾𝐿𝐿�̇�𝑹𝐼𝐼 + 𝚵𝚵𝐼𝐼 (42) 

where 𝑀𝑀𝐼𝐼 is the ionic mass, 𝛾𝛾𝐿𝐿 is a Langevin friction coefficient and 𝚵𝚵𝐼𝐼 = 𝚵𝚵𝐼𝐼𝐷𝐷 + 𝚵𝚵𝐼𝐼𝐿𝐿 an 
additive white noise. Using the above assumption equation (42) is identically to: 

 𝑀𝑀𝐼𝐼�̈�𝑹𝐼𝐼 = 𝑭𝑭BO − (𝛾𝛾𝐷𝐷 + 𝛾𝛾𝐿𝐿)�̇�𝑹𝐼𝐼 + 𝚵𝚵𝐼𝐼 (43) 

In order to guarantee an accurate sampling of the Boltzmann distribution, the noise has to 
obey the fluctuation dissipation theorem: 

 〈𝚵𝚵𝐼𝐼(0)𝚵𝚵𝐼𝐼(𝑑𝑑)〉 = 6(𝛾𝛾𝐷𝐷 + 𝛾𝛾𝐿𝐿)𝑀𝑀𝐼𝐼𝑘𝑘B𝑇𝑇𝛿𝛿(𝑑𝑑) (44) 

The choice of 𝛾𝛾𝐿𝐿 is arbitrary, while the unknown 𝛾𝛾𝐷𝐷 has to be determined by requiring that 
the aggregate noise term generate the correct average temperature, i.e. fulfils the 
equipartition theorem 〈1

2
𝑀𝑀𝐼𝐼�̇�𝑹𝐼𝐼2〉 = 3

2
𝑘𝑘B𝑇𝑇. As we see in a moment, this leads to correct a 

sampling of the Boltzmann distribution. In addition, since the initial dynamics is quite 
accurate, 𝛾𝛾𝐷𝐷 is rather small and even dynamical properties can be very well reproduced. 

2.5.5. Illustrative examples: liquid silicon, silica and water 
For the purpose of demonstrating this new approach, it has been implemented in the mixed 
Gaussian Plane Wave (GPW) (Lippert, Hutter, Parrinello, 1997) code QUICKSTEP (Krack, 
Parrinello, 2004; VandeVondele et al., 2005), which is part of the publicly available suite 
of programmes CP2K.2 In order to illustrate that this method works well irrespective of 
band gap, system size and type, calculations on metallic liquid silicon and liquid silica are 
presented. Both systems are known to be very difficult, and are examples of liquid metals 
(Si) as well as of complex, highly polarisable, ionic liquids (SiO2). Furthermore, the 
simulations have been performed at 3 000 K and 3 500 K respectively, which leads to 
rapidly varying density matrix elements, thus making the propagation of the electronic 

                                                      
2. www.cp2k.org 
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degrees of freedom particularly challenging. Hence, the selected test cases can be 
considered as worst-case scenarios for any method.  

All simulations have been performed at their experimental liquid densities using double-
zeta valence polarisation (DZVP) basis sets, adequate density cutoffs, Goedecker-Teter-
Hutter pseudopotentials (Goedecker, Teter, Hutter, 1996; Hartwigsen, Goedecker, Hutter, 
1998; Krack, 2003) and the local density approximation to the exact exchange and 
correlation functional. For simplicity the Brillouin zone is sampled at the Γ-point only, 
while equation (43) is integrated using the algorithm of Ricci and Ciccotti (2003), with a 
time step of ℎ = 1 fs. The friction coefficient 𝛾𝛾𝐿𝐿 was set equal to zero, while the values for 
𝛾𝛾𝐷𝐷 turned out to be in the range of 10−4 fs−1. The new 𝑪𝑪’s are predicted using 𝐾𝐾 = 4 in 
equation (37), which ensures time-reversibility up to 𝑂𝑂(ℎ6).  

First, the accuracy in terms of the energetic deviation from the BO surface is considered. 
As can be seen in Figure 2.1. the energies are an upper bound to the ground state and are 
displaced by a very small and approximately constant amount. It is also shown that, as 
already mentioned, the deviation from the BO surface can be even further reduced by 
increasing the number of corrector steps. In fact, it is actually possible to control the 
deviation from the BO surface by varying the number of corrector steps in order to achieve 
a preassigned accuracy level. However, in the following only simulations based on a single 
corrector step will be reported. 

Figure 2.1. Deviations from the BO surface of liquid SiO2 with respect to total energies 
(upper panel) and mean force deviations (lower panel) 

 

 
Note: The deviation in the energies corresponds to a constant shift of 4.16 ∙ 10−4 Hartree per atom for one 
corrector step and 3.5 ∙ 10−5 Hartree per atom for two corrector steps. The average mean force deviation is 
unbiased. 
Source: Kühne, 2019. 



44 │ NEA/NSC/R(2019)2 
 

STATE-OF-THE-ART REPORT ON MULTI-SCALE MODELLING METHODS 
      

Figure 2.2. Partial pair-correlation functions g(r) of liquid Si (upper left panel) and liquid 
SiO2 at 3 000 K and 3 500 K respectively, using a DZVP Gaussian basis set 

 
Source: Kühne, 2019. 

Nevertheless, let us now to turn to more realistic problems such as those shown in Figure 
2.2. Although these simulations have been performed with only a single corrector step, they 
are still amazingly close to the BOMD reference results. It should be emphasised that even 
in liquid Si, which is metallic and poses problems when using an ordinary CP scheme, a 
single corrector step is sufficient. This establishes the efficiency of this method, since only 
a single preconditioned gradient calculation with no additional minimisation step has to be 
performed. The possible acceleration, in comparison with regular BOMD calculations, 
depends crucially on the system studied. In the undoubtedly difficult cases just presented a 
speedup of two orders of magnitude compared to using a pure extrapolation scheme has 
been observed. For simpler problems still an increase in efficiency of at least one order of 
magnitude can be expected. 

In Figure 2.3. displays results, which prove that also dynamical properties can be evaluated 
with accuracy. To that extent the velocity autocorrelation function and its Fourier transform 
at 325 K is presented. The results are in good agreement with accurate reference 
calculations and are consistent with experiment, as well as ab-initio all-electron 
calculations (Krack, Parrinello, 2000), showing that in spite of the stochastic nature of 
equation (43) dynamical properties can also be simulated. This implies that also chemical 
reactions and even non-equilibrium processes can be treated. In the same picture it is 
explicitly verified that the previous assumptions are justified, and indeed a canonical 
sampling is performed, by showing that the kinetic energy distribution is Maxwellian 
distributed. To this end, a 64 atom liquid Si simulation is carried out for as long as 1 ns, to 
reduce the noise and to ensure a proper sampling of the relevant kinetic energy distribution 
tails. 
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Figure 2.3. (a) The kinetic energy distribution of metallic liquid Si64 (b) Velocity 
autocorrelation function. (c) Fourier transform of the velocity autocorrelation function of 

32 water at 325 K. 

 

Note: Calculation details: (a) 1 ns trajectory, time step: 3.25 fs, basis set: DZVP Gaussian basis set, density 
cutoff: 100 Ry (c) basis set: TZV2P Gaussian basis set, density cutoff: 280 Ry, exchange-correlation functional: 
BLYP,. Langevin friction coefficients: 𝜸𝜸𝑳𝑳 = 𝟎𝟎 and 𝜸𝜸𝑫𝑫~𝟏𝟏𝟎𝟎−𝟖𝟖 fs−𝟏𝟏. 
Source: Kühne, 2019.  

Due to space considerations only a fraction of the systems studied is reported here. 
Nevertheless, in all cases this method has proven to be accurate and the gain in speed has 
always been remarkable (Kühne, Krack, Parrinello, 2009; Camellone, Kühne, Passerone, 
2009; Cuinotta et al., 2009; Kühne et al., 2011; Luduena, Kühne, Sebastiani, 2011a, 2011b). 
Structure relaxations via dynamic annealing and geometry optimisation have also been 
successfully performed (Carvati et al, 2007, 2009a, 2009b, 2009c, 2010, 2011). Contrary 
to CPMD and related methods integration time steps up to the ionic resonance can be used. 
Thanks to this development it is now possible to perform AIMD simulations on medium-
sized systems up to a few nanoseconds, thus making a new class of problems accessible to 
ab-initio simulations. 

2.6. Conclusion 

To conclude it should be noted, that with increasing length and time scales CPMD-based 
approaches are expected to become more advantageous than BOMD, since otherwise 
meeting the more and more stringent accuracy requirements of longer simulations and 
larger system sizes would entail an ever tighter wavefunction convergence. The Car-
Parrinello-like approach to BOMD (Kühne et al, 2007) just described extends the scope of 
ab-initio simulations by combining the best of either method and allows for AIMD 
simulations previously thought not feasible. 

(a) (b)

(c)
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3.  Classical interatomic potentials 

T. R. Zeitler and L. J. Criscenti 
Sandia National Laboratories, United States 

3.1. Introduction 

The behaviour of nuclear materials under operating conditions is difficult, expensive, 
unsafe and in some cases impossible to observe experimentally. Computer simulation 
provides an attractive alternative to direct experimental observation and has the distinct 
advantage of allowing for systematic study of individual effects on materials properties. 
Classical simulations have a rich history of providing atomic-scale information based on 
simple energy minimisation (e.g. predicting stable defect configurations), molecular 
dynamics (MD) (i.e. the time evolution of a system of atoms), and Monte Carlo (MC) (i.e. 
stochastic) simulations that can then be used to drive the design of future experiments. 
These techniques require a description of the potential energy of a system, which is usually 
described via a set of classical potentials (or force field). 

A set of interatomic potentials consists of parameterised equations and parameter values 
developed for specific interactions that allow for calculation of potential energy as a 
function of a geometric variable (usually interatomic separation, but angles are sometimes 
used) (Cygan, 2001). For example, a simple harmonic potential has the form E(rij)=k(rij-
ro)2, where the parameters k and ro are defined for the interaction of two types of atoms i 
and j — e.g. O and H in an O-H bond—and the interatomic separation is given by rij. A 
harmonic potential for the interaction of Si and O in a Si-O bond will have the same form, 
but different parameter values. The potential energy of a system is therefore defined by the 
potentials and the geometry of the system. In this way, the potential energy of a complex 
system can be calculated by summing the contributions of each interaction according to the 
prescribed analytical expressions defined by the potentials (Cygan, 2001).  

Interatomic potentials are parameterised and verified using experimental results and 
electronic-scale ab-initio calculations. These potentials are then used as input for atomic-
scale simulations. The materials properties calculated from atomic-scale simulations (e.g. 
thermal conductivity or defect populations) can then be used for higher-level (e.g. kinetic 
Monte Carlo (KMC)) calculations. Of course, the reliability of the properties calculated by 
higher-level methods depend heavily on the quality of the underlying potentials used for 
the atomic-scale simulations. Clearly, developing reliable potentials is of great necessity to 
multi-scale modelling endeavours and the ability of a higher-level method to accurately 
describe physical processes. For example, a classical potential should be able to properly 
reproduce point defect populations before a higher-level method could be expected to 
accurately calculate the effects of defects on microstructure for a material undergoing 
neutron irradiation (Becquart, Domain, 2011).  

If the ultimate goals of simulation are to predict material lifetimes or the long-term 
microstructure evolution due to exposure to severe conditions experienced in nuclear 
reactors (e.g. elevated temperatures, corrosive environments, cyclic loading [Devananthan 
et al., 2001]), then an accurate description of atomic-scale interactions for nuclear materials 
is necessary. Increased reliability and confidence in potential models will lead to improved 
multi-scale modelling results. When an accurate multi-scale modelling approach is 
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implemented, a feedback loop will then be available which will allow for increasing 
efficiency in exploiting the properties of current materials (e.g. enhancing enrichment and 
fuel burnup in nuclear fuels) and a true engineering of novel nuclear materials. One of the 
indispensable keys to a proper multi-scale model is the development of quality interatomic 
potentials. 

3.2. Key issues in developing classical potentials 

3.2.1. Fitting/verification 
After assuming a form of the classical potential (e.g. harmonic, Buckingham), parameters 
are fit in order to replicate experimental data (typically static elastic and dielectric constants 
and lattice parameters, but also defect properties) or theoretical calculations. Parameters 
are changed systematically, manually or using a computer program such as GULP (Gale, 
Gulp, 1997), to minimise the difference between given data and those calculated with the 
new potential. The number of parameters needed for a complete potential depends on the 
form of the potential. Potential parameters can be improved by including a greater number 
of experimental comparisons. 

A key test to ensure an accurate potential is model verification. This can be done by 
comparison with experimental data that has not been used to initially fit the parameters, 
though calculated properties (e.g. from ab-initio MD simulations) also provide additional 
points of comparison. In most cases, some experimental data is used as fitting parameters 
for development of the model, so it is not surprising when there is strong agreement with 
these same calculated properties. However, more complicated properties (i.e. second-order 
properties) are increasingly used as both fitting parameters and points of verification. One 
example is parameterising to vibrational power spectra. 

3.2.2. Applicability/transferability 
One of the key issues in potential development has been determining the extent to which a 
set of interatomic potentials can reliably be applied to situations far removed from the 
fitting domain. This is true in terms of interatomic separations, temperature/energy range, 
and composition (e.g. the transferability from pure to mixed systems). For example, 
potential parameters that are fit to zero K lattice properties may not be able to fully 
reproduce dynamical properties at high temperatures (e.g. predicting melting point). And 
fitting parameters to a distinct range of temperature data does not guarantee a proper fit for 
temperatures outside of that range. In this way, a lack of quality experimental data can limit 
the development of a quality potential. 

A lack of initial fitting parameters can lead to limitations in its range of applicability. A 
single model that is applicable over a large range of temperature and composition is rare 
(Tiwary van de Walle, Gronbech-Jensen., 2009). By fitting to a large number of initial 
structures, transferability of a potential set to a new system (which can be fundamentally 
different, but consist of the same components) is helped (Cygan, Liang, Kalinichev, 2004). 
General force fields (such as the universal force field (UFF) (Rappe et al., 1992) or Dreiding 
(Mayo et al., 1990) force field) have been used for materials (Duren, Bae, Snurr, 2009; 
Nalaparaju et al., 2009) that did not exist when the force fields were created.  
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3.3. Classification of classical potentials 

A set of classical potentials can be classified in a number of ways, including its description 
of individual ions, what types of interactions are included, and the specific forms of those 
interactions. 

3.3.1. Description of ion 
Two basic models of interatomic potentials have been used with nuclear materials, the core-
shell model and the rigid ion model. The core-shell model accounts for polarisation effects 
by describing ions as massive cores connected to massless charged shells by a spring (Dick, 
Overhauser, 1958). In this case, the shells interact with one another via short-range 
potentials, while long-range Coulomb interactions take place among all cores and shells. 
Some examples of core-shell models are those of Jackson (1986) and Gotte (2007). In the 
rigid ion model, all ions are described as massive point charges. MD simulations with rigid 
ion models are faster because there are fewer interactions to calculate. Rigid ion models 
include those of Morelon (2003), Sindzingre and Gillan (1988), and Karakasidis (1994).  

Defect energy calculation benefits from a description of electronic polarisation of the lattice 
ions. This is usually accounted for by use of core-shell models in which an ionic dipole can 
be represented by the core-shell separation. However, due to the extremely high energy 
considered in displacement cascade simulations (discussed below), core-shell models are 
not suitable for this type of simulation (Morelon et al., 2003).  

3.3.2. Interatomic potential types 
Besides a model type, each set of potentials has general forms of energy description. The 
electrostatic contribution to energy is long-range in nature and given by the well-known 
form of the Coulomb energy: 

 −𝐸𝐸𝑖𝑖𝑗𝑗 =
1

4𝜋𝜋𝜖𝜖0

𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗
𝑟𝑟𝑖𝑖𝑗𝑗

 (1) 

where qi is the charge assigned to atom i, and rij is the interatomic distance between atoms 
i and j and ε0 is the permittivity of free space. The total contribution of electrostatics can 
be obtained by summing over all atoms and their periodic images. The Ewald summation 
(1921) or Wolf’s direct method (1999) are typically used to efficiently calculate this sum. 
In some cases, partial charges are used instead of formal charges. 

Other potentials are restricted to apply only for a smaller range of interatomic separations 
(i.e. a cutoff separation is enforced) and are thus termed “short-range” contributions. The 
simplest short-range description of forces is that of a two-body (“pair”) potential that is 
defined only between two atoms. A number of pair potential forms exist, including 
Buckingham (1938), Born-Mayer-Huggins (BMH) (Fumi, Tosi, 1964a, 1964b), Lennard-
Jones (L-J) (Frenekl, Smit, 2002), and Morse (1929).  

Many-body potentials are used in cases where a simple two-body treatment is insufficient 
to properly replicate fitting data. In a simple case, the potential energy of a three-body term 
is based on the positions of two neighbours. This formulation is able to represent some 
directionality in bonding. Some examples of three-body potential forms are Stillinger-
Weber (1985) and the embedded-atom method (EAM) (Daw, Baskes, 1983).  

Finally, complex reactive force fields, where explicit charge transfer and even the breaking 
of bonds are permitted, are becoming more popular as computational power continues to 



54 │ NEA/NSC/R(2019)2 
 

STATE-OF-THE-ART REPORT ON MULTI-SCALE MODELLING METHODS 
      

explode. Some examples of reactive force fields include REAXFF (van Duin et al. 2008) 
and that of Garofalini (2001).  

3.3.3. Specific forms of classical potentials 

Buckingham 
The Buckingham form of pair potentials is common for oxide materials and has the form: 

 
𝐸𝐸𝑖𝑖𝑗𝑗 =  𝐴𝐴𝑖𝑖𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒 �

−𝑟𝑟𝑖𝑖𝑗𝑗
𝜌𝜌𝑖𝑖𝑗𝑗

� −  
𝐶𝐶𝑖𝑖𝑗𝑗
𝑟𝑟𝑖𝑖𝑗𝑗6

 

 
(2) 

where Aij, ρij, and Cij are parameters for the interactions of atoms of type i and j. The first 
term represents Pauli electron repulsion due to overlapping electron densities while the 
second describes van der Waals attraction. At the very short interatomic separations 
experienced in high-energy displacement cascade simulations, the net Buckingham 
potential is unphysically attractive, which has led to the development of splined potentials 
that result in repulsion even at very small interatomic distances (Ziegler, Biersack, Littmark 
et al., 1985; Govers et al., 2007).  

The BMH potential energy description is similar to the Buckingham potential (Lewis, 
Catlow, 1985). The Bushing-Ida (Yoshiaki, 1976) form of potential energy has been used 
in a number of models (Basak, Sengupta, Kamath, 2003; Yamada et al., 2000a) for UO2 
and can be written as the summation of Buckingham and Morse potentials (Watanabe et 
al., 2008).  

Morse 
Covalent bonding between anions and cations is sometimes accounted for via use of a 
Morse potential of the generic form: 

 𝐸𝐸𝑖𝑖𝑗𝑗 =  𝐷𝐷0�1− 𝑒𝑒−𝛼𝛼(𝑟𝑟−𝑟𝑟0)�2 (3) 

Lennard-Jones 
A simple and commonly used potential form is that of L-J: 

 𝐸𝐸𝑖𝑖𝑗𝑗 =  𝐷𝐷0 ��
𝑅𝑅0
𝑟𝑟𝑖𝑖𝑗𝑗
�
12

− 2�
𝑅𝑅0
𝑟𝑟𝑖𝑖𝑗𝑗
�
6

� (4) 

where D0 is the depth of the potential energy well and R0 is the equilibrium atomic 
separation. The first term describes electron repulsion and the second reflects London 
dispersion (Cygan, 2001).  

Vashishta-Rahman 
A Vashishta-Rahman (VR) potential has the form: 

 𝐸𝐸𝑖𝑖𝑗𝑗 =  
𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗
𝑟𝑟𝑖𝑖𝑗𝑗

+ �
𝐴𝐴𝑖𝑖𝑗𝑗(𝜎𝜎𝑖𝑖 + 𝜎𝜎𝑗𝑗)𝜂𝜂𝑖𝑖𝑖𝑖
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 (5) 
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where the first term is the Coulomb term, the second term represents electron repulsion, the 
third term represents a monopole-induced dipole interaction, and the final term describes 
van der Waals attraction (Gunay et al., 2011).  

Ziegler-Biersack-Littmark 
The Ziegler-Biersack-Littmark (ZBL) universal pair potential (1985) is widely used for 
small interatomic separations where a traditional Buckingham or BMH potential is 
unphysically attractive (Tiwary et al. 2009, 2001; Ackland, 1997). The ZBL potential is 
then smoothly connected to the other form using some sort of (arbitrary) spline, such that 
the overall potential, as well as its derivative is always continuous. The morphology of a 
displacement cascade is heavily influenced by this repulsion at small separations (Becquart 
et al., 2000). An alternative to the ZBL potential is a Buckingham (4-range) potential, 
sometimes used to avoid the attraction at unphysically small O-O separations (Jackson et 
al., 1986; Read, Jackson, 2010; Björkas, Nordlund, 2007).  

Embedded-atom method 
The EAM (Daw, Baskes, 1983, 1984) and Finnis-Sinclair (FS) (1984) are potential forms 
for describing metallic bonding and represent significant advances in metallic potentials. 
EAM consists of pair potentials plus an embedding energy to represent many-body 
interactions due to the local environment. This embedding energy is analogous to the 
bonding term in FS. In addition to being a function of interatomic separation, the interaction 
between two atoms is also a function of local environment. These potentials are density-
dependent, which makes validation more challenging, especially when the potentials are 
extended to alloys. 

The form of the EAM potential is: 

 𝐸𝐸𝑖𝑖 = 𝐹𝐹𝛼𝛼 ��𝜌𝜌𝛽𝛽(𝑟𝑟𝑖𝑖𝑗𝑗)
𝑗𝑗≠𝑖𝑖

� +
1
2
�𝜙𝜙𝛽𝛽(𝑟𝑟𝑖𝑖𝑗𝑗)
𝑗𝑗≠𝑖𝑖

 (6) 

where F is the embedding energy and is a function of atom i’s environment via the density 
ρ of surrounding atoms. The potential is defined for atom types i and j and applies to all 
neighbours j of atom i within a prescribed cutoff distance. A pair potential 𝜙𝜙 is also defined 
for the i-j interaction. The EAM formulism has been shown to be versatile for a number of 
different Fe-alloys (Jang, Lee, Hong, 2008).  

3.4. State of the art in classical potentials for nuclear fuel cycle materials 

3.4.1. Nuclear fuels 

UO2 
The most common nuclear fuel in use is UO2; likewise, the greatest number of 
computational studies of nuclear fuels is for UO2. A number of different potentials have 
been used over the past 50 years to model UO2 structure, defect behaviour, and diffusion, 
as well as the effect of neutron irradiation on those properties. In many cases, incremental 
advances in the UO2 potentials have led to a greater agreement between simulation results 
and experimental data (or theoretical calculations). 
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The first UO2 potential was introduced in 1962 (Benson, Freeman, Dempsey, 1963). 
Catlow et al. later developed a series of improved UO2 potentials (1978, 1977) in the 1970s 
– these were core-shell models fit to elastic and dielectric constants and lattice parameter 
and were designed to calculate defect formation energies. A set of rigid ion potentials 
(Walker, Catlow, 1981) of the BMH form was also developed by Catlow et al to be able to 
run MD at high temperatures in order to investigate superionic properties. In addition, 
Grimes and Catlow also developed an extensive set of self-consistent core-shell potentials 
to examine migration and solution energies of Xe, I, Ba, Kr, Rb, Br, He, Sr, Y, Te, Cs, Ba, 
La, Ce, Zr, Ru in UO2. (See references 26-34 in Govers et al., 2007.)  

Jackson later modified (Jackson et al., 1986, 1985) Catlow’s potentials to eliminate the 
unphysical attraction of Buckingham energy at small separations by adding a new 
functional form of the potential and combining it with the Buckingham form using 
polynomial interpolations (splines). Sindzingre and Gillan (1988) later modified O-U 
interactions for the same potential and added a splined (4-range) Buckingham for O-O 
interactions. Karakasidis and Lindan (1994) revised these parameters after discovering that 
the O-O spline potential was not stable.  

Another core-shell model was developed for MD simulations of UO2 by Lindan and Gillan 
(1994) to look at oxygen diffusion at high temperature and the superionic phase. Yamada 
et al. (2000a) developed an independent potential with non-integer charges (qU=+2.4) and 
a covalent U-O (Morse) term.  

Morelon et al. (2003) used point defect energies (static and migration) for fitting to a BMH-
type potential, eliminating U-U short-range interactions, zeroing the attractive term for U-
O interactions, and revising the partial charges of U and O species (Morelon et al., 2003). 
These defect properties are important in displacement cascade simulations, though the 
migration energies are more difficult to calculate (than defect energy formation) because 
they require a determination of the transition structure of the migration process (Morelon 
et al., 2003). The Morelon potential showed improved agreement with thermal expansion 
data, especially above 2000 K (whereas the Yamada potential (2000a) is only good up to 
about 1 500 K) where anharmonicity effects have been taken into account by the use of 
defects and transition states were included in the parameterisation of potential parameters. 
It also shows improved defect energies, but mediocre agreement with elastic properties. 

An extensive two-part investigation of interatomic potentials by Govers et al. (2007, 2008) 
for UO2 includes a thorough review of the history of UO2 potentials from 1962 to 2007. In 
addition to detailing significant modifications of a number of independently-developed 
potentials, the first part of the investigation compared 19 separate versions of potential 
models on their ability to reproduce experimental and ab-initio properties including lattice 
parameters; elastic constants; phonon dispersion modes; and the formation, migration and 
binding energies for various defects using static calculations. The potentials reproduced the 
lattice parameters and elastic constants, though this is not surprising because most 
parameters were originally fit to these properties. A wide range of values was calculated 
for the other properties, leading the authors to conclude that no best potential existed in the 
group. However, they could conclude that neither the class (i.e. core-shell or rigid ion) nor 
type (e.g. Buckingham, Morse) of model had a great impact on the accuracy of the 
potentials; rather, it was the parameterisation of the model that was critical.  

In the second part of the investigation, Govers et al. (2008) used MD simulations to test the 
same potentials for their abilities to reproduce the temperature dependence of various 
properties including lattice parameters, specific heat and bulk modulus, as well as melting 
temperature. This was a test of the anharmonicity of the potentials, i.e. their abilities to 
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provide information on non-equilibrium properties even though they were fit to static lattice 
properties. While Govers et al. again conclude that no single best potential was found, they 
make the generalisation that rigid ion models with partial-charge assignments and some 
core-shell potentials were best able to reproduce experimental data (likely because thermal 
expansion curves were part of the fitting processes in many of these cases). Core-shell 
potentials are generally developed to be able to reproduce static polarisation effects and 
thus do not accurately reproduce anharmonicity effects (Govers et al., 2008). However, 
they did note that they expect challenges with partial-charge rigid ion models when dealing 
with charged defects (e.g. how to properly determine the ionicity of the defect)—and 
suggest that a potential developed with formal charges would be more appropriate in that 
case. 

Since Govers’ extensive reviews, additional UO2 models have been published, as well as a 
comparison of various potentials for their ability to produce defects via energetic recoils 
(Devananthan, Yu, Weber, 2009). This study showed a dramatic effect of a chosen potential 
on the calculated defect population. Because the size of defect clusters and distribution of 
defects play a significant role in the later evolution of the defect site, a proper description 
of the potential energy is crucial to be able to have confidence in higher-level calculations. 
Also, for an electronic insulator such as UO2, defects play a major role in determining 
thermal transport properties. This study also found that the potential of Yakub (2007) best 
replicated equilibrium properties. 

Tiwary et al. (2009) developed a UO2 potential that is applicable across all interatomic 
distances by fitting to the results of ab-initio calculations of defect energies. They also 
underlined the importance of a proper splining procedure to join multiple potentials that 
are individually valid over separate spatial regions. 

Using a novel methodology for potential development, Read and Jackson (2010) introduced 
a new potential to more accurately represent the UO2 lattice following Frenkel defect 
creation due to neutron irradiation and to correct the overestimated contribution of the 
attractive term in the cation-anion Buckingham potentials previously published. This model 
was developed to enhance applicability over a wide range of structural data and a wide 
range of other physical properties. In this core-shell model, the anion-anion Buckingham 
potential was derived and the cation-anion short-range interactions were given a BMH 
form. Though not included in the original parameterisation, calculated phonon dispersion 
curves and defect energies compare well with literature values. This model has not yet been 
applied to MD simulations. 

A new potential by Gunay (2001) has been shown to be excellent at describing the transition 
to the superionic state and melting in UO2. The potential has a VR form and is a rigid ion 
model with partial-charge assignments.  

Other UO2 models of note include those of Arima (rigid ion) (2005), Meis (core-shell) 
(1998), and Busker (core-shell) (Abramowski, Grimes, Bradford, 2000; Busker, Grimes, 
Bradford, 2000, 2003). The Busker model is notable because it has good transferability 
among a number of elements and has ability to study nonstoichiometry since it is 
parameterised for U3+ and U5+. 

Because it is radioactive, UO2 is experimentally difficult to use for studying the effects of 
radiation damage. However, CeO2 is similar to UO2 in terms of fundamental properties 
(e.g. lattice parameter, density, thermal diffusivity), so it has been proposed as a surrogate 
material for investigations of radiation damage in UO2 (Aidhy, Wolf, El-Azab, 2001). A 
number of pair potentials have been developed for CeO2, including rigid ion BMH and 
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core-shell Buckingham forms (Xu et al., 2010). Particularly of interest is that some have 
been parameterised for nonstoichiometry (Gotte et al., 2007).  

PuO2/MOX fuel 
Yamada et al. (2000b) have developed rigid ion potentials for mixed oxide (MOX) and 
nitride nuclear fuels, adding a Morse potential to the Buckingham potential. The potentials 
were developed to be transferable among solid solutions of UO2 and PuO2 for MOX fuels. 
The form of the rigid ion potential is Buckingham with an additional Morse term for cation-
anion pairs. Thermal and mechanical properties of MOX fuel were calculated via MD 
simulations. This potential was later modified by Basak (2003) to better reproduce thermal 
expansion data. The partial-charge potentials developed by Arima (2005) are also of the 
BMH-type and have been used to examine thermal properties of (U, Pu)O2 MOX fuels via 
MD simulation. 

Tiwary et al. (2011) developed an approach for creating a consistent form of the potential 
over all distances and applied it to UO2 (Tiwary et al., 2009) and then extended its use to 
PuO2 and NpO2 (Tiwary et al., 2011) in a self-consistent manner such that MOX fuels (U, 
Pu, Np)O2 can be simulated over a wide range of experimental conditions. They fit the 
potentials to an extensive database of experimental and ab-initio results and thoroughly 
showed the potentials reliably reproduce properties outside of the fitting parameters. This 
represents a major step forward in the production of transferable potentials.   

Nitride fuel 
A mixed nitride (U, Pu)N fuel potential was developed by fitting to thermal expansion and 
pressure expansion data to a BMH + Morse form (Kurosaki et al., 2000); and, calculating 
thermal and mechanical properties with MD simulations. Radiation defect generation in 
UN was studied via ab - initio calculations, the results of which can be used to develop 
better quality classical potentials (Kotomin et al., 2008).  

3.4.2. Cladding/structural elements 

Fe and Fe-alloys 
Ferritic and austentitic steels in nuclear reactors (e.g. pressure vessel ferritic steel and 
internal structure austentitic steel) are subject to neutron irradiation that can lead to stress 
corrosion cracking and eventually failure. Metal cladding encapsulates nuclear fuel and is 
exposed to neutron irradiation, which can lead to swelling (due to void formation) and 
affect diffusion properties in the material. The effects of irradiation on a number of 
steel/iron alloys are now routinely studied using MD displacement cascade simulations 
where primary knock-on atoms (PKA) are given a high initial kinetic energy and based on 
the time evolution of the system of interest, defects are introduced in a perfect crystal as 
momentum is transferred to a PKA’s neighbour atoms.  

The quality of the potentials describing interatomic interactions influences the ability of the 
simulation to predict neighbour atom trajectories, diminished mechanical properties, and 
defect generation and clustering (Devananthan, Yu, Weber, 2009; Malerba et al., 2010; 
Malerba, 2006). Primary damage defects in iron include self-interstitial atoms (SIAs), 
vacancies, and Frenkel pairs, and their clustering can give an indication of diffusion 
mechanisms and nucleation sites for larger defects (Björkas, Nordlund, 2007). The results 
from MD cascade simulations can be used as input into higher-level (e.g. KMC or 
continuum) models, so accuracy in calculated properties is of great importance (Becquart, 
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Domain, 2011). With this consideration, many recent studies rely on electronic-scale 
ab - initio DFT calculations for development and verification of the interatomic potentials 
used in MD simulations. This is particularly important because experimental observation 
of irradiation effects is nearly impossible due to the time and length scales at work (Bequart, 
Domain, 2011).  

Primarily, Fe has been studied as a model system for steel, though development of new 
potentials now allows for study of a number of Fe-alloys. Bequat and Domain (2011) give 
an excellent review of the over 45-year history of damage formation investigations for Fe 
and Fe-alloys (e.g. Fe-Cr and Fe-Cu). The effects of P (Ackland et al., 2004), Cu (Pasianot, 
Malerba, 2007), and He (Seletskaia et al., 2007; Gao et al., 2011), which are known to 
embrittle Fe, have also been considered. Little research has been done on the Fe-C system 
(Becquart et al, 2007) due to difficulty of simulating ab - initio supercell sizes that are large 
enough to depict the low C concentration present in ferritic steels. The effects of interatomic 
potentials on irradiation damage in Fe are reviewed by Becquart et al. (2000).  

Despite the seemingly simplistic structure of Fe, a number of potentials have been 
developed, none of which are able to reproduce experimental data entirely. Of particular 
concern are the well-known deficiencies in many Fe models for predicting defect energies 
(Malerba, 2006). Understanding the accumulation of damage due to neutron irradiation is 
crucial to the understanding of the effects on Fe, but there are still discrepancies in predicted 
defect cluster populations at the atomic scale (Björkas, Nordlund, 2007; Malerba, 2006) 
that make predicting longer time scale damage problematic. Although ab-initio calculations 
of defect structures and energies continue to be increasingly important for interatomic 
potential development and verification (Becquart, Domain, 2009), there is still a lack of 
fundamental understanding of how and why defect clustering occurs and how that 
clustering affects defect mobility (Samaras, Victoria, Hoffelner, 2009).  

A number of studies exist which compare radiation damage effects among multiple Fe 
potentials (Becquart et al., 2000; Malerba et al., 2010). One of these studies (Becquart et 
al, 2000) found significant differences in primary damage creation due to subtle differences 
in the potentials. While many Fe potentials have been derived for equilibrium-type 
calculations, they are later “hardened” (to eliminate the possibility of close contacts of 
atoms) to be suitable for cascade simulations. Although all potentials in the study had 
reasonable threshold displacement energies, they each have had different hardening 
procedures, which leads to differences in repulsive potential for small separations. These 
differences result in significant differences in cascade shape, as well as defect energies and 
populations. Even thermal properties are affected. It was concluded that the different 
hardening methods play a role in these properties, underlining the importance of proper 
potential development and the applicability of different potentials over different 
interatomic separation ranges (Becquart et al, 2000).  

The Mendelev set of interatomic potentials for body centred cubic-Fe (bcc-Fe) (Mendelev 
et al, 2003) is of the EAM type and was derived based on a careful fitting procedure that 
took into account a large set of experimental data and DFT-derived point defect energies. 
A more recent analysis of the state of the art in Fe potentials indicates that Mendelev-type 
potentials are the best choice for developing Fe-alloy potentials, as well as applying the 
calculated properties to larger scale models (Malerba et al., 2020). This study also 
concludes that the ability of classical interatomic potentials to capture SIA clusters and 
dislocations is still elusive. The study provides an extensive database of static and dynamic 
properties (including defect formation and migration) for Fe based on the results of 
simulations for five published potential models.  
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Some more recent models of note include those of Muller (2007) and Dudarev and Derlet 
(2005, 2011). Muller’s potential for Fe is able to reproduce the temperature-dependent body 
centred cubic to face centred cubic (bcc-to-fcc) transition of Fe. The “magnetic” potential 
of Dudarev and Derlet contains an explicit magnetic contribution to the interaction energy.   

3.4.3. Waste forms 
The containment of high-level waste (HLW) has been an active area of research and 
development for over 50 years (Weber et al., 2009). Borosilicate glasses and complex 
ceramic composites have been developed to meet HLW containment issues. Research to 
date has focused on immobilising existing HLW that consists of all the liquid effluents 
from the reprocessing of commercial and defence spent nuclear fuel. New research is 
focused on creating new separation waste streams, recycling spent nuclear fuel, and 
minimising the volume and heat load of waste forms. New waste forms tailored to specific 
waste streams and high waste loadings may be needed. Two useful review papers on 
nuclear waste glasses and ceramic waste forms for actinides are from Grambow (2006) and 
Lumpkin (2006), respectively. 

Waste streams include: (1) the long-lived fission product 99Tc, (2) the principal heat-
generating isotopes 137Cs and 90Sr, (3) lanthanides, (4) minor actinides, (5) remaining 
fission products, (6) volatile radionuclides, (7) the undissolved solids from fuel dissolution 
(Weber et al., 2009). Waste-form types include (1) glass, (2) ceramic, and (3) glass-
ceramic. Classical MD has been used to look at the chemical durability of glass and various 
single-phase ceramic waste forms. The main vulnerabilities of polyphase ceramic or glass-
ceramic waste forms for radionuclide immobilisation are along grain boundaries and can 
be better investigated using mesoscale models. 

Glass waste forms 
Glass waste forms are the most commonly used HLW form today. The amorphous and 
relatively disordered structures of glasses can incorporate a wide range of chemical 
elements. Borosilicate glass compositions may include up to 30-40 different elements. 
Although borosilicate glass is used by most countries, Russia has chosen to use 
aluminophosphate glass for HLW. One of the advantages of glass waste forms is that the 
particles emitted in radioactive decay can be readily accommodated in their amorphous 
structure, and the effects of α-decay are small at the ambient temperatures expected over 
the decay times for actinides. Volume changes and changes in chemical durability due to 
α-decay are minimal. Potential problems with glass waste forms relative to crystalline 
waste forms include (1) more rapid dissolution in groundwater, and (2) radioisotope 
diffusion rates in the waste form could increase the local surface concentration of 
radioisotopes exposed to water.  

Classical MD simulations have been used to study glass structure and the interaction of 
glass surfaces with water for many years. The choice of interatomic potentials to use in 
classical MD simulations is of fundamental importance for the accuracy of simulated 
physical and chemical properties such as structure, elastic constants, heat capacities and 
other thermodynamic properties (Pedone et al., 2006). Numerous interatomic potentials are 
available in the literature for silica glass and silica polymorphs (van Beest, Kramer, van 
Santen, 1990; Duffrene, Kieffer, 1998; Demiralp, Cagin, Goddard, 1999; Vashista et al., 
1990; Takada et al., 2004). These force fields incorporate a variety of functions and terms 
to describe different silica glass properties. 
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However, fewer potentials are available for multicomponent glasses like those proposed 
for HLW immobilisation, and there have not been many efforts to provide generalised 
self-consistent force fields that are capable of modelling the structures, 
mechanical, and chemical properties of silica-based glasses with different 
compositions (Pedone et al., 2006). Table 3.1. lists classical potentials found in the 
literature that have been developed and used to simulate multicomponent silica-based 
glasses. Table 3.2. lists classical and reactive potentials that have been used to study 
the interaction of multicomponent glass with water. 

Table 3.1. Force field models for glass 

Composition Form of potential Authors 
Na, K, Ca, Si, B, O Modified BMH used by Busing w/o dispersion 

terms 
Soules (1979) 

SiO2, AlPO4 Buckingham form known as BKS Van Beest, Kramer, and van Santen 
(1990) 

Al, O Modified BMH Blonski and Garofalini (1993) 
Li, Cs, B, O BMH Verhoef and den Hartog (1995) 
Mg, Ca, Al, Si, O Modified BMH used by Busing w/o dispersion 

terms 
Okuno and Kawamura (1995) 

Na, Ca, Al, Si, B, Zr, O BMH Delaye and Ghaleb (1996) 
Na, Ca, Al, Si, B, O BMH – improvement on D&G (1996) Abbas et al. (2003) 

Cormier et al. (2003) 
Na, Si, O Buckingham Du and Cormack (2004) 
Al, O Buckingham Adiga et al. (2006) 
Na, Ca, Si, Al, O, Zr Morse function with partial ionic charge model Pedone et al. (2006) 

Table 3.2. Force field model for glass-water interaction 

Composition FF for glass FF for –OH and H2O Authors 
Si, Na, H2O BMH Shell model for H2O 

-OH: Morse potential
Leed and Pantano 
(2003) 

Si, O, Si-OH, 
H2O 

Buckingham (Teter’s) 3-body term for Si-O-H; Coulomb subtracted
Morse potential for –OH group

Du and Cormack 
(2005) 

Si, O, Si-OH, 
H2O 

BMH + 3 bond angle 
terms 

Rahman, Stillinger & Lemberg form for Si-H, O-
H, and H-H

Feuston and 
Garofalini (1990) 

Si, O, Si-OH, 
H2O 

Modified BMH + 3-body 
potential 

Modified BMH + 3-body potential Litton and Garofalini 
(2001) 

Si, O, Si-OH, 
H2O 

Modified BMH + 3-body 
potential 

Modified BMH + 3-body potential Garofalini (2001) 

From our review of available force fields, three stand out as potential candidates for future 
research on the design of new HLW glass waste forms and their dissolution properties. The 
first force field was specifically developed by Delaye and Ghaleb (1996) to simulate a 
nuclear waste glass matrix. As in previous simulation studies of the structure of simple 
glasses (e.g. Soules, 1979; Soules, Varshneya, 1981), potentials of the BMH form were 
used to represent a glass comprising the major components of a nuclear waste glass (SiO2 

+ B2O3 + ZrO2 + Al2O3 + Na2O (+ CaO)). Three-body potentials were applied to O-Si-O,
O-B-O and Si-O-Si triplets. The local environmental structures showed overall agreement
with experimental results and the simulated densities, thermal expansion coefficients and
viscosities of the simulated glasses were on the same order of magnitude as experimental
data. This force field has been used to examine a suite of nuclear waste glass compositions
(Delaye, Louis-Achille, Ghaleb, 1997). Experimentally determined changes in glass
structure with increasing boron concentration were reproduced by the calculations.
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Additional work by this French group includes combined multiple-quantum magic angle 
spinning nuclear magnetic resonance (MQ-NMR) spectroscopic and MD studies to 
examine the Na environment in several two- and three-component glasses (Angeli, Delaye, 
Charpentier, Petit, Ghaleb and Faucon, 2000a) and changes in Al-O-Si angle with 
increasing Ca content (Angeli, Delaye, Charpentier, Petit, Ghaleb and Faucon, 2000b). 
Abbas et al. (2003) used this same force field model to compare the structural properties of 
bulk glass with a glass surface. The simulations predict the migration of alkali cations 
towards the surface, lower coordination numbers for trivalent elements in the subsurface 
layer, oxygen enrichment in the outer layer, and larger tetrahedral ring structures on the 
surface. 

The second force field model is that of Pedone et al. (2006) who developed a generalised 
self-consistent force field that is able to model both the structures and mechanical 
properties of silica-based glasses with different compositions. To produce a coherent set of 
potential functions, these researchers performed empirical fitting to structural and 
mechanical properties of a large set of crystalline oxides. The potentials developed in this 
work consist of three terms: a long-range Coulomb potential, a short-range Morse function, 
and a repulsive contribution (C/r12). The resulting potential is given by: 

 𝑈𝑈(𝑟𝑟) =
𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑒𝑒2

𝑟𝑟
+ 𝐷𝐷𝑖𝑖𝑗𝑗��1− 𝑒𝑒−𝑎𝑎𝑖𝑖𝑖𝑖(𝑟𝑟−𝑟𝑟0)2� − 1� +

𝐶𝐶𝑖𝑖𝑗𝑗
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 (7) 

A rigid ionic model with partial charges is used to handle the partial covalency of silicate 
systems in order to model the quenching of melts and structures and mechanical properties 
of glasses. A core-shell model might provide more accurate results for surfaces, but would 
require a shorter-time step and lead to computationally more expensive quench simulations.  

This force field has been parameterised to include numerous glass components including 
many of importance in nuclear waste glasses (Na2O, CaO, Al2O3, SiO2 and ZrO2). 
However, to our knowledge, this force field has neither been used to study glass surface 
structures nor combined with a water model to examine glass surface hydroxylation or 
other interactions between glass surfaces and water. In earlier papers by the same group 
(Du, Cormack, 2005; Zeitler, Cormack, 2006), surface hydroxyl-silicon and hydroxyl-
phosphorous potentials were developed to study the hydroxylation of silica and 
phosphosilicate glasses. These potentials include a short-range interaction described by a 
Buckingham equation, a potential function for the hydroxyl group that has the Coulomb-
subtracted Morse form, and a three-body term introduced to reproduce the Si(P)-O-H bond 
angles on glass surfaces. The surface structures were used successfully to investigate the 
energy of chemisorption of water on different surface sites and to determine the OH 
coverage of glasses. 

The third force field that shows promise for studying multicomponent nuclear waste glass 
dissolution is the reactive force field of Garofalini (2001). From the beginning, this 
force field was developed to investigate glass surface structures and the interaction of water 
with glass surfaces. It now includes parameters for Si, Al, and B, and allows for breaking 
glass network bonds between Si-O, Al-O and B-O by reaction with water molecules 
(Garofalini, 2011). This force field has been demonstrated to successfully reproduce bulk 
glass and hydroxylated surface structures, but is not the best for calculating the mechanics 
or energetics of these systems. Mahadevan and Garofalini (2007, 2008) have developed a 
new dissociative water potential to improve upon the previous force field model. However, 
this new potential is still being developed for multicomponent systems. 
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Ceramic waste forms 
In crystalline ceramic phases, radionuclides occupy specific atomic positions in the 
periodic structures of constituent crystalline phases allowing high loadings of specific 
radionuclides (Weber et al., 2009). Waste-form phases tend to have complex structures, 
with a number of different coordination polyhedra of various sizes and shapes and with 
multiple schemes to allow for charge balance with radionuclide substitutions. Ceramic 
waste forms are designed to incorporate either actinide or Cs/Sr waste streams. These waste 
forms are usually polyphase, however, in some cases single-phase ceramics such as 
zirconolite, monazite, apatite, or NaZr-phosphate can incorporate nearly all the 
radionuclides (i.e. actinide or Cs/Sr) into a single structure. Unlike glass, crystalline phases 
can be shown to survive several hundred million years or more in wet, thermal geologic 
environments.   

A major concern with the use of ceramic waste forms is the modification of crystalline 
structures by irradiation (Weber et al., 2009; Grambow, 2006; Lumpkin, 2006). At high 
ionisation doses and T, many materials undergo decomposition, phase separation and 
bubble formation under electron-beam irradiation on laboratory time scales. Single-phase 
ceramics generally exhibit a crystalline-to-amorphous transformation with volume changes 
ranging from 5-18%. Because this is a critical concern for the use of ceramic waste forms, 
classical MD studies have focused on the impact of irradiation on candidate crystalline 
materials.   

Classical potentials used to study the effects of the α-decay process, the collision of α-recoil 
nuclei with surrounding atoms, and localised displacement cascades (DCs) typically are 
BMH potentials or potentials that include Buckingham parameters to describe short-range 
interactions. An example of the latter type of potential was developed for zirconolite 
(CaZrTi2O7), a matrix being considered for the long-term confinement of actinides, by 
Veiller et al. (2001): 

 𝑈𝑈𝑖𝑖𝑗𝑗�𝑟𝑟𝑖𝑖𝑗𝑗� = 𝐴𝐴𝑖𝑖𝑗𝑗 exp�
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In this equation, rij is the interionic distance, Zie and Zje are the formal charges of the ions, 
η=6.7 Å and Aij, pij, and Cij are adjustable parameters to be determined. The first two terms 
correspond to the short-range Buckingham potentials and represent both the repulsive 
interactions due to ion overlap and the attractive van der Waals interaction between them. 
The last term is a screened Coulombic term where the complementary error function 
reduces the ionic charges Zie and Zje as a function of rij. 

The best mineral structure potentials include ion polarisation effects. For example, a shell 
model includes the electronic cloud linked to the core ion by a spring of constant stiffness. 
However, DCs can only be modelled using rigid ion model potentials (Veiller, 
Crocombette, Ghaleb, 2002). An important parameter that affects radiation damage is the 
threshold displacement energy (Ed) which is the minimum kinetic energy necessary to 
displace an atom from its equilibrium crystallographic site. It is possible to calculate Ed 
through classical simulations; however, there are not very many experimental values for Ed 
except for zircon (ZrSiO4). Different atoms in each crystal phase will have different Ed 
values based on ionic mass, charge and nearest neighbours. To initiate the DC, one cation 
in the crystal structure is replaced by U4+ or U3+. 

Veiller et al. (2002) compared simulation results for zirconolite with those for zircon 
(Crocombette, Ghaleb, 2001) and UO2 (Jackson, Huntington, Ball, 1995). A trend that is 
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consistent with experimental observation is observed by this suite of studies. For zircon, an 
amorphous core is created around the DC track with no surrounding defects. For UO2, 
vacancies and interstitials are created throughout the crystal with no specific defects along 
the DC trajectory. The behaviour of zirconolite lies between that of zircon and UO2. The 
simulated irradiation of zirconolite does not result in as much amorphisation as observed 
in experiment; nor is the phase transition from monoclinic to fluorite structure reproduced 
by the simulations. These differences could be due to weaknesses in the empirical 
potentials, but there are other possible explanations for them as well (Veiller, Crocombette, 
Ghaleb, 2002).  

One disadvantage of using a rigid ion potential, is that the energy or heat generated by the 
(PKA, cannot be transferred to the electrons in the crystal structure. To compensate for this 
Phillips and Crozier (2009) developed a two-temperature model to represent the interaction 
between atoms and free electrons during thermal transients such as radiation damage and 
cascade simulations. This model communicates energy between electronic and atomic 
subsystems using a Langevin thermostat, and does not impact the form of the classical 
potentials. This approach was used to study the effects of cascade damage in a gadolinium 
pyrochlore (Gd2Zr2O7). The simulations showed that the electronic subsystem can act as a 
heat sink for the PKA and the inclusion of this system reduces the predicted cascade 
damage in the crystal structure (Ismail et al., 2010). More research is required to more 
accurately depict the electron-ion interactions during a cascade event. 

3.5. Challenges and future direction for development of classical potentials for 
nuclear materials 

Range of application 
A well-known limitation of classical potentials is that they are generally only applicable 
over a small range of temperatures and/or interatomic separations. Even when potentials 
that are good over different ranges are combined, the way that they are combined also 
affects the resulting properties (Tiwary et al., 2009). Recent work by Tiwary et al. (2009) 
has taken advantage of DFT calculations in order to develop a systematic method for 
producing UO2 potentials that are good over a large range of interatomic separations. By 
applying this procedure to MOX fuels and Fe-alloy claddings will lead to better potentials 
for radiation damage studies. 

While ever-increasing computer power has led to routine electronic-scale DFT 
calculations, these ab-initio calculations are usually limited to predicting structures at 0 K. 
For the case of defects, these configurations may be expected to be different at the high 
local temperatures due to irradiation. The use of ab-initio MD (AIMD) to address this 
problem, while computationally costly, may uncover some new information about defect 
structure and therefore allow for better fitting of classical potential parameters. 

Great strides have been made to make potentials that are applicable from room temperature 
to above the melting point of a material, but based on recent reviews, clearly there are 
different potentials that are best over different temperature ranges (Govers et al., 2007, 
2008).  

Charge transfer/reactive models 
While reactive models are a relatively new invention (even in the relatively short history 
of classical simulation), their development for nuclear materials will represent a major step 
forward in the ability to consider defect migration and charge transfer between ions. This 
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may be particularly useful for the case of UO2, where U exists in different oxidation states. 
It will also allow for more accurate surface reaction simulations. Some initial work has 
been done for a charge transfer model for Fe (Samaras, Victoria, Hoffelner, 2009), which 
could be used to predict oxygen mobility and oxidation mechanisms. However, additional 
work is needed to develop new functional forms for interatomic potentials in mixed ionic-
covalent systems of interest.  

Density functional theory calculations 
To an increasing extent, the results of DFT calculations are being used for developing and 
verifying interatomic potentials. This is especially true for defect configurations and 
migration energies, where experimental data is lacking or impossible to obtain. However, 
there are still some limitations to DFT calculations. Because DFT-calculated properties 
represent the lowest-level in multi-scale simulation schemes, it is extremely important that 
these limitations be addressed. 

The choice of functional has been shown to influence the resulting structure – e.g. local 
density approximation (LDA) predicts incorrect structure of low temperature Fe and does 
not predict its magnetism; the use of generalised gradient approximation (GGA) resolves 
this problem, though it is not immediately clear why this should be so (Becquart, Domain, 
2001). The choice of basis set or pseudo potential can also have an effect on some energetic 
properties of Fe-alloys since core atoms may overlap in cases where SIAs are predicted to 
be close to each other – in these cases, a more expensive “all electron” method may be 
required (Becquart, Domain, 2009). Actinides are especially difficult in this case because 
they contain f electrons (Devanathan et al., 2010).  

DFT calculations also may suffer from the problem of applicable range. The stability of 
defect configurations is still difficult to predict—some configurations not included in the 
original parameterisation cannot be reproduced by a set of potentials (Geysermans, 2008). 
The applicability of these potentials for cases where DFT results do not exist is still not 
clear (Malerba et al., 2010), though a recent study of polymer structures far from 
equilibrium is promising (Mattsson et al., 2010).  

Also, inclusion of the magnetic contribution to structure (e.g. in Fe-alloys) could play a 
role in calculated defect energies since spin-orbital coupling plays a major role in the 
structure of some nuclear materials. This needs to be taken into account at the quantum 
mechanical level (Samaras, Victoria, Hoffelner, 2009). Some initial work has already been 
done (Dudarev, Derlet, 2005; Chiesa et al., 2001).  

Lack of appropriate experimental data 
Because of the lack of experimental results for primary damage due to displacement 
cascades, it is difficult to test the reliability of new potentials for Fe and Fe-alloys. A review 
of some popular Fe potentials shows that the defect population and distribution can be 
sensitive to the potential (Becquart et al., 2000). Additional ab-initio calculations can help 
to resolve these issues, which have initially been addressed by Tiwary et al. (2009)  

Indeed, standard interatomic potentials have been called into question since increases in 
computing power have allowed for routine ab-initio calculations that can better predict 
defect configurations. Increased use of ab-initio calculation results as fitting parameters 
has led to greater versatility and applicability in EAM potentials (Mendelev, Ackland, 
2007).  
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In many cases, experimental data does not exist and atomic-scale results must be fed into 
higher-level models in order to be able to make a reasonable comparison. However, this 
introduction of an additional model makes any discrepancy difficult to reconcile (Becquart, 
Domain, 2009).  

An additional consideration is that experimental data, even when available, may not be 
directly comparable to simulated results. Simulations are almost always done for systems 
without impurities, whereas real materials invariably have impurities that can lead to 
discrepancies in properties even among experimental data (Becquart, Domain, 2009).  

3.6. Conclusions 

Computer simulation provides an attractive alternative to direct experimental observation 
for nuclear materials that are difficult to observe experimentally under operating 
conditions. Classical simulations are used to predict material lifetimes or the long-term 
microstructure evolution due to exposure to severe conditions experienced in nuclear 
reactors. In addition, they are used to shed light on the use of glass and ceramic waste forms 
to contain radioactive waste over extended periods of time. Classical potentials are 
expressions that describe interatomic interactions. These potentials are fit to experimental 
data and quantum-based DFT calculations. The capability of each potential to predict 
material behaviour is often limited by the parameterisation of the potential; i.e. the range 
of interatomic distances and conditions (T, P) used to fit the potential. Although there is 
more work to be done to improve these potentials, their use has already served to illuminate 
the properties and behaviours of nuclear materials, and will continue to contribute to our 
development of new approaches to enhance enrichment and fuel burnup in nuclear fuels, 
predict waste-form lifetimes and engineer novel nuclear materials. 
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4.  Molecular dynamics  

Dorothy M. Duffy 
Department of Physics and Astronomy, University College London, United Kingdom 

4.1. Introduction to molecular dynamics 

Molecular dynamics (MD) employs the numerical integration of Newton’s equations of 
motion to calculate the time evolution of a system of interacting atoms. The time and length 
scales that can be studied using molecular dynamics make it particularly suitable for the 
calculation of the primary damage produced by an irradiation event. In this paper we 
describe the MD simulations, known as cascade simulations, used to model radiation 
damage and the extent to which these simulations have contributed to our understanding of 
radiation processes and the resulting defect structures. We discuss the limitations of the 
current models, in particular the accuracy of the interatomic potentials, the limits to the 
radiation energy association with simulation cell size and the inadequate description of the 
role of electrons. We discuss how further development in these areas will improve the 
predictive nature of the models. 

4.1.1. Methodology 
MD is an atomistic simulation methodology that is based on the numerical integration of 
Newton’s equations of motion. A simulation is initiated by assigning co-ordinates and 
velocities to a set of interacting atoms. The force on each atom is calculated from the known 
positions of all other atoms therefore, in principle at least, the positions and velocities of 
the atoms at a future time can be determined by numerical integration of the equations of 
motion. A balance between accuracy and simulation time is achieved by choosing an 
appropriate time step for integration, which is generally a few (1-3) femtoseconds. Efficient 
integration algorithms, such as the Verlet velocity algorithm, ensure that numerical errors 
are minimised. The Verlet algoritm for the calculation of the co-ordinate r at time t is 
derived by summing the Taylor expansions of the cordinate r at times t + ∆t and t-∆t, that 
is:  

  (1) 
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Therefore, the co-ordinates of all the atoms at a time t + ∆t can be calculated from the co-
ordinates at times t and t - ∆t and the forces at time t (f(t)). The force on each atom (labelled 
i) is calculated from the derivatives of the potential energy (U) of the system of atoms with 
respect to the co-ordinate of atom i: 

 
 

(4) 

Therefore, if the potential energy of the system of atoms, as a function of the co-ordinates, 
and the initial co-ordinates are known, then the co-ordinates at a future time can be 
evaluated using equation (3). 

4.1.2. Interatomic potentials 
The most important parameters that limit the accuracy of MD simulations are the 
interatomic potentials that describe the interactions between the atoms. In general, the 
potential energy of a set of interacting atoms can be written: 
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Therefore, in theory at least, the forces on all atoms can be determined if the positions are 
known. In practice, however, determining the various interactions in equation (5) is 
challenging. An alternative approach is to calculate U directly using ab-intio techniques, 
such as density functional theory, and to employ the Born-Oppenheimer approximation to 
calculate forces. Such ab-intio MD methods are under continuous development and it is 
now possible to model a few thousand atoms for a few picoseconds. These system sizes are 
well below those required for radiation damage therefore we focus here on classical MD in 
which an approximate potential energy function must be determined a priori. 

In classical MD the challenge is to find approximation for the potential energy (U in 
equation (5)) that will retain the important physics but will not be prohibitively time 
consuming to calculate. Two body interactions, such as the Lennard Jones potential, 
truncate equation (5) after the first term. This allows for very large systems to be modelled 
but it only gives a reasonable description for very simple systems, such as the noble gases. 
The Coulomb interactions between charged atoms are calculated using efficient 
summations techniques, such as the Ewald summation, to take account of the long-range 
nature of this interaction. Covalent bonds in polymers and biomolecules are described well 
by the first three terms in the equation (bond stretching, bond bending and torsion). 
Interatomic potentials for materials that have wide ranging technological applications have 
attracted particular attention, with over 30 different potentials being published for silicon 
(Bazant et al., 1997). Carbon has presented particular challenges and a number of potentials 
have been developed that attempt to describe the change in the bond hybridisation with 
environment (e.g. REBO (Brenner, 1990) and the REAXFF (van Duin et al., 2001) 
potentials). The effective charge on atoms in ionic crystals may also depend on the 
environment and variable charge potentials have been developed in order account for this 
effect to some extent (Rappel, Goddard, 1991). The many-body interactions necessary to 
capture the elastic properties of metallic materials are included by embedded-atom type 
potentials (Daw, Baskes, 1992) such as the successful Finnis-Sinclair model (Finnis, 
Sinclair, 1984) which includes a term related to the local density of the atoms. 
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In spite of dramatic improvements in potentials over the years, it is not generally possible 
to ensure that any potential will describe all properties of a material equally well. Potentials 
are derived by fitting to experimental data or ab-initio results and the ability of a potential 
to predict a property that was not used in the fitting procedure (known as the transferability) 
is the signal of a good potential. The potential chosen for a particular simulation will depend 
on which properties make the dominant contribution to the features to be studied.   

4.1.3. Time/length scales  
The time and length scales that can be modelled using MD are strongly dependent on the 
complexity of the interatomic potentials. A record breaking one trillion atom simulation 
has been performed on the Livermore’s Bluegene/L computer but this was to demonstrate 
a capability rather than to extract results from the simulation (Germann, Kadau, 2008). 
Typical large-scale simulations range from a few hundred thousand atoms to a few million 
and typical time scales range from a few tens of picoseconds to a few nanoseconds. Many-
body potentials for metals are efficient to calculate but the long-range Coulomb interactions 
in ionic materials are more time consuming. Potentials that attempt to model the effects of 
chemical environment (such as REAXFF and REBO potentials) result in relatively slow 
simulation times therefore, as always, a balance needs to be found between accuracy and 
efficiency.  

4.2. Modelling radiation damage using molecular dynamics 

4.2.1. Advantages  
Early models of radiation damage used the binary collision approximation (BCA), in 
various forms to estimate the number of Frenkel pairs (NKP) created by a radiation event 
with a particular energy (E). The first of these, the Kinchin Pease (KP) model, was able to 
derive a simple formula (equation (2)) by making a number of assumptions (Kinchin, 
Pease, 1955). 

 
d

KP E
EN

2
=  (6) 

Here Ed is the displacement energy, which is the minimum energy required to displace an 
atom from its lattice site to a neighbouring interstitial site to produce a stable Frenkel pair. 
It is clear that the KP model overestimates the number of defects because it neglects the 
recombination events that inevitably occur. An improved form (the 
Norgett−Robinson−Torrens model) was suggested by Norgett (1975) which considers only 
the fraction of the energy not lost to inelastic collisions with electrons and takes some 
account of recombination. More sophisticated BCA models, based on numerical 
simulations, have been developed that include accurate scattering potentials and electronic 
energy loss (Robinson, Torrens 1974; Ziegler 2004). However, binary collision models are 
only accurate for situations in which the collisions between the moving atoms and the atoms 
of the host crystal are spatially separated, which is only the case for light energetic atoms. 
In the general case, the moving atoms interact with many host atoms simultaneously and it 
is difficult to predict the number of defect pairs created by the resulting correlated atomic 
motion. 

The correlated atomic motion resulting from radiation damage events can be successfully 
modelled using MD. MD is significantly more demanding, from a computational point of 
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view, than BCA models, nevertheless, the length and time scales of the primary damage 
events of radiation damage can readily be modelled. Primary damage refers to the defects 
remaining after the excess energy imparted by the radiation event has dissipated and the 
local temperature has returned to the ambient value, which typically occurs around a few 
tens of picoseconds after the radiation event. The spatial extent of the primary damage is 
strongly dependent on the mass and energy of the moving atom. Heavy atoms rapidly lose 
energy to the host crystal and produce localised damage whereas light atoms, such as 
helium, have a low cross section for nuclear collisions and travel long distances before 
stopping.  

4.2.2. Methodology 
A cascade simulation is a particular type of MD simulation that is used to model radiation 
damage in materials. The initial configuration is an arrangement of atoms with the 
equilibrium crystal structure and random velocities, corresponding to the simulation 
temperature, assigned to the atoms. One atom (the primary knock-on atom (PKA)) in the 
simulation cell is assigned a velocity corresponding to the kinetic energy (the PKA energy) 
of radiation event to be modelled (Figure 4.1.). The MD simulation is then evolved using a 
standard integration algorithm until the PKA energy has dissipated and the simulation 
temperature converges to a constant value. 

Figure 4.1. A schematic representation of a cascade simulation. 

 
Note: The PKA (green) is assigned a velocity (white arrow) corresponding to the required PKA energy at the 
start of the simulation. 
Source: Duffy, 2019. 

Atoms are displaced from their lattice positions during the simulation but many will return 
to an alternative lattice site as the energy dissipates. Not all atoms return to lattice sites 
however. Some remain in interstitial positions, leaving a corresponding number of vacant 
lattice sites. The identification of defects can be carried out by counting the number of 
atoms in each Wigner Seitz cell of the lattice. An empty cell signals a vacancy and a cell 
with two atoms signals an interstitial. Alternatively, a lattice site can be labelled as vacant 
if there are no atoms within a predefined radius (ro) and an atom is labelled as an interstitial 
if it is further than ro from any lattice site. The former (Wigner Seitz) method provides a 
unique method for defect counting whereas the second method is sensitive to the value of 
ro chosen as the cutoff. The second method does, however, capture details about the defect 
structure that are missed by the Wigner Seitz method. Split interstitials (dumb-bells), 
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crowdion clusters and stacking fault tetrahedra are examples of common defect clusters 
that are created by cascade simulations of radiation damage in metals. A crowdion is an 
extended interstitial, in which an additional atom is inserted in a close packed direction in 
a metal. This has the effect of displacing several atoms, located along the close packed 
direction, from their lattice sites. An example of a 30 crowdion cluster is shown in Figure 
4.2. 

Cascade simulations require a number of features which are not always available in 
standard MD programmes. One useful feature is a variable time step. The highly non-
equilibrium nature of a cascade means that in a typical MD time step of 1 fs a 10 keV Fe 
atom would move a distance of 0.35 Å, which will result in a large change in the force and 
possibly a failed simulation. To avoid these effects it is necessary to use a very short 
simulation time step (possibly as low as 0.001 fs) in the initial stages of a high-energy 
cascade simulation. As the simulation progresses the velocity of the PKA atoms falls 
rapidly therefore progressively longer time steps can be employed. A variable time step 
algorithm imposes to limit the distance moved during one-time step by identifying the 
maximum velocity of the ensemble of atoms and choosing an appropriate time step. 

Figure 4.2. Top view (a) and side view (b) of a crowdion cluster oriented in the <011> 
direction in a body centred cubic metal. 

 
(a)                                                                          (b) 

Note: The cluster has 170 interstitials (large orange spheres) and 140 vacancies (small blue spheres). Each 
crowdion has one excess interstitial. 
Source: Duffy, 2019. 

A further consideration for cascade simulations is how the excess energy of the PKA atom 
is dissipated during the simulation. Standard thermostats are inappropriate because they 
calculate the temperature from the average velocity of the atoms. The average velocity can 
be extremely high in the early stages of a simulation therefore the excess energy will be 
rapidly removed by the thermostat and the cascade will be quenched. There are two 
alternatives: either the total energy is conserved (using a constant energy NVE simulation), 
which will result in a temperature rise as the PKA energy dissipates through the cell, or the 
excess energy is removed via a boundary thermostat, which rescales the velocities of the 
atoms that reside within a few Å of the cell boundary. Both methods are commonly used. 

As with all MD simulations, the ability of the interatomic potentials to reproduce the effect 
of atomic interactions in real materials is crucial to the accuracy of the results. The 
challenges associated with interatomic potentials will be discussed in the next section but 
here we discuss an issue that concerns cascade simulations in particular – that of close 
encounters between atoms due to the high velocity of some atoms. Conventional 
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interatomic potentials are highly inaccurate at close interatomic separations as they use near 
equilibrium conditions for fitting procedures. For cascade simulations it is necessary to 
modify the short-range interaction potential to give a more realistic description of forces at 
close separations and this is achieved by replacing the chosen potential with a screened 
Coulomb potential, known as the Ziegler-Biersack-Littmark (ZBL) potential (V(r); 
equations (7)-(9), at close separations (Biersack and Ziegler 1982). 
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𝜙𝜙(𝜐𝜐) = 0.1818𝑒𝑒−3.2 𝑦𝑦 + 0.5099𝑒𝑒−0.9423 𝑦𝑦 + 0.2802𝑒𝑒−0.4029 𝑦𝑦 + 0.2817𝑒𝑒−0.2016 𝑦𝑦 

(8) 

 

  (9) 

Here r is the interatomic separation, a0 is the Bohr radius and Z1 and Z2 are the atomic 
numbers of the interacting atoms. The ZBL potential is joined to the standard potential by 
a spline function to ensure that the potential, and its derivatives, are continuous.  

4.2.3. Results 

Metals 
MD has been an invaluable tool for studying radiation damage in metals since the 
publication of the classic paper by Gibson et al. (1960). Early simulations were restricted 
to small simulation cells and, consequently, low PKA energies. Nevertheless, interesting 
and important processes such as channelling, where atoms travel long distances between 
lattice planes, and replacement collision sequences (RCS) were identified. In an RCS, a 
moving atom makes a direct collision with a neighbouring atom along a close packed 
crystallographic direction. The initial atom occupies the neighbouring site and sets the 
neighbour in motion along the same direction so the sequence is repeated until the energy 
is dissipated. Such sequences are effective mechanisms for generating well separated 
vacancy-interstitial pairs with relatively low energy radiation events. 

As computer power increased and the accuracy of interatomic potentials improved, the 
power of cascade simulations increased dramatically. The relationship between the number 
of Frenkel pairs and the PKA energy was established for several metals and compared to 
the NRT model (see, for example, de la Rubia, 1996; Stoller et al., 1996, 1997; Stoller, 
2012). The structures of defect clusters created by high-energy radiation damage were 
identified. Dislocation loops, formed by the collapse of interstitial clusters, were observed 
and stacking fault tetrahedra were observed in face centred cubic (fcc) metals. The 
formation of defect clusters by radiation damage makes a significant contribution to the 
change in mechanical properties as these clusters may be more or less mobile than isolated 
defects. Vacancy clusters may also be nucleation sites for bubbles, as they act as trapping 
sites for gases created by transmutation reactions. Defect clusters may contribute to 
radiation embrittlement because they act as obstacles to dislocation motion. Indeed, the 
barrier strength of different types of defect cluster, a parameter that is required for 
dislocation dynamics simulations, can be calculated using molecular dynamics. Swelling, 
which occurs due to the differential volume relaxation between vacancies, can also be 
calculated using MD simulations.  
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Ceramics  

Ceramic materials are employed for a wide range of nuclear applications, including nuclear 
fuel and encapsulation materials for nuclear waste disposal. MD has made significant 
contributions to the understanding of the fundamental processes in these materials and the 
radiation effects and issues are generally quite different than those in metals. Embrittlement 
is not a concern, as ceramics are intrinsically brittle, but swelling can be problem as the 
resulting internal stresses may cause cracking. Amorphisation occurs readily in some 
ceramic materials and this has been investigated using cascade simulations. The degree of 
covalency has been identified as having a strong influence on the susceptibility of ceramic 
materials to amorphisation (Trachenko, 2006). An example of an amorphised region of 
zircon, formed by a 30 keV U PKA cascade simulation is shown in Figure 4.3. 
(Devanathan, 2009). The complex crystal structures of many nuclear ceramics means that 
a rich variety of possible defects structures are possible and MD simulations can help to 
characterise these defects (Zinkle et al., 2002). 

Figure 4.3. An amorphised region of zircon, formed by a 30 keV U PKA cascade simulation 

 
Source: Devanthan, 2009.  

4.3. Limitations/challenges 

4.3.1. Simulation size 
The PKA energy that can be modelled by MD depends on the number of atoms in the 
simulation cell as a sufficiently large cell must be employed to avoid self-interaction 
effects. The PKA, and any subcascades it creates, must be confined within the simulation 
cell. The energy deposited in the cell by the cascade event thermalises by atomic collisions 
and diffuses to the boundaries of the simulation cell, where it can re-enter the cell through 
the periodic boundary and affect the results. A boundary thermostat, which dissipates 
energy in the outer layers of the simulation cell, inhibits energy diffusion across the 
periodic boundary and permits smaller simulation cells to be used. As a rough guide, around 
5 -10 ×104 atoms are required per keV of PKA energy but this number depends, to some 
extent, on the material being modelled. Recent simulations of 0.5 MeV cascades in Fe used 
5×108 atoms in the simulation cell and were performed on 6×104 parallel processors 
(Zarkadoula et al., 2013). These simulations are particularly relevant to fusion technology 
as 0.5 MeV is close to the average recoil energy from a 14.1 MeV neutron, produced by 
deuterium-tritium fusion, in Fe.  
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4.3.2. Interatomic potentials  
As discussed in the introduction, the results obtained from any MD simulation are only as 
reliable as the interatomic potential employed. For cascade simulations it is important that 
the potentials reproduce the melting temperature and thermal expansion coefficient in order 
to obtain a realistic response of the material to the large energy density associated with the 
radiation event. The displacement energies and defect properties (energies and mobilities) 
are also very important as these will influence the number of defects produced and the 
degree of defect clustering and annihilation. The importance of steel, both ferritic and 
austenitic, as a structural material for both fission and fusion reactors has led to the 
development of many interatomic potentials for iron and detailed comparisons between the 
results obtained from cascades using different potentials (Becquart et al., 2000; Malerba 
2006; Terentev et al., 2006; Malerba 2010). The conclusions from these studies were that 
the number of residual defects produced was largely potential independent, at least for the 
most recent potentials that focused on fitting parameters that are relevant to radiation 
damage. However, details of the damage formation and, in particular, the fraction of defects 
that formed part of clusters did depend on the choice of potentials. Even the method by 
which the equilibrium potential was joined to the high-energy ZBL potential seemed to 
affect the details of the cascade evolution. 

4.3.3. Electronic effects  
Another concern about cascade simulations is that the electrons, and the effects they have 
on damage production, are largely neglected. In effect, the electronic degrees of freedom 
are integrated out of the problem and included only at the level of the interatomic potentials. 
However, an atom moving through a material loses energy via both nuclear collisions, 
which are described well by MD, and inelastic collisions with electrons. A particular 
example of the relative stopping power (the energy loss per unit distance) for an Fe atom 
moving in an Fe lattice, calculated using the SRIM code, is shown in Figure 4.4. It is clear 
from the figure that nuclear loss dominates at low energies but inelastic (electronic) losses 
increase as the energy of the moving atom increases.  
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Figure 4.4. Plots of the variation of electronic and nuclear stopping powers for an Fe ion 
moving in Fe 

 
Note: At low energies the nuclear losses dominate and at high energies the electronic losses dominate. 
Source: Duffy, 2019. 

The energy loss resulting from inelastic collisions in metals is often included as a friction 
term that operates above some cutoff velocity (Nordlund et al., 1998). This, however, does 
not take account of what happens to the energy that is deposited in the electrons. For weak 
coupling between the lattice and the electrons, and a high electronic thermal conductivity, 
the energy is transported rapidly from the cascade region and it should not affect the 
residual damage (Flynn, Averbach, 1988, Finnis et al., 1991). However, if the coupling 
between the lattice and the electrons is strong and the electronic thermal conductivity is 
low, the electronic energy can be confined close to the cascade for sufficient time to be 
redistributed back to the lattice. In this case, the residual defect number can either be 
enhanced or reduced depending on whether the electronic effects quench the cascade or 
contribute to defect annealing. This effect has been demonstrated (Rutherford, Duffy, 2007) 
using a methodology that couples the effective electronic temperature to an MD simulation 
of the lattice (Duffy, Rutherford, 2007). A comprehensive review of the electronic effects 
in radiation damage has been produced by Race et al., (2010) and the introduction of these 
effects in radiation damage simulations is reviewed by Darkins and Duffy (2018). 

The effects of excited electrons are even more significant in band gap materials than they 
are in metals. Cations in some metal oxides, including UO2, exist in a number of different 
charge states. Electrons excited to the conduction band by radiation, and the corresponding 
holes, become mobile and thus they may get trapped at lattice defects, possibly created by 
other damage events. Trapped electrons will substantially modify the defect’s conformation 
and mobility. Figure 4.5. shows the calculated relaxed conformation of an O interstitial in 
MgO with a net charge of -2e, -1e and 0. The O- interstitial was found to have a very low 
(~0.06 eV) migration barrier, which suggests that the interstitial with one trapped hole will 
be extremely mobile (Mulroue, Duffy 2011). As the defect mobility dominates the 
microstructure evolution, the electronic defects will have a strong influence on the evolving 
material properties. Electrons, holes and excitons can also distort the lattice to such an 
extent that they become trapped by their own distortion field (self-trapped) and the decay 
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of these self-trapped carriers can result in energy redeposition to the lattice, or even defect 
formation (Shluger, Stoneham 1993). Thus, it is clear that modelling radiation damage in 
band gap materials using cascade simulations and classical potentials neglects several 
effects that could strongly influence the results (Klaumünzer, 2006; Duffy et al., 2012). 

Figure 4.5. The relaxed defect configuration for oxygen interstitials in MgO. 

 

 
Note: The interstitials have a net charge of a) -2e (cell centre configuration) b) -1e (<011> oriented dumb-bell) 
and c) 0 (<111> oriented dumb-bell). 
Source: Duffy, 2019.  

4.4. Future developments 

The future requirements for MD simulations of radiation damage follow from the 
limitations discussed in the previous section. Advances in computer power and the 
development of more efficient algorithms, particularly for reading/writing large datasets, 
will extend the range of PKA energies that can be modelled, although simulations with 
PKA energies higher than 500 keV are unlikely to become routine in the near future. 
Interatomic potential development and evaluation is an area where much effort is required. 
The KIM (Knowledge base of Interatomic Models) project (Tadmor et al., 2011) should 
make an important contribution to interatomic potential development and evaluation in the 
next few years. Much more needs to be done on developing potentials for real engineering 
alloys although past experience in the development of potentials for Fe/Cr alloys (Olsson 
et al., 2005; Caro et al., 2005), that aim to describe the observed phase behaviour, reveals 
just how challenging this can be. It is important that the phase behaviour is correctly 
described as radiation enhanced diffusion can accelerate the precipitation of stable 
intermetallic particles. Radiation enhanced segregation and depletion at grain boundaries 
are important effects that rely on accurate mixed potentials. Oxide dispersion strengthened 
(ODS) steel offer a potential solution to the low high temperature strength of conventional 
ferritic steel but modelling radiation effects in ODS steel will require potentials for the 
oxide (YTiO3) nanoparticles and, even more challenging, the interaction between the oxide 
and the host metal. It is clear there is much yet to be done in the field of potential 
development before the full potential of modelling radiation effects using MD can be 
realised. 

A further area where MD could make significant contributions is in the examination of the 
effect of microstructure on radiation damage. There is evidence from cascade simulations 
in nanocrystalline metals (Samaras et al., 2002) and from temperature accelerated dynamics 
(Bai et al., 2010) that grain boundaries enhance defect recombination and there is 
speculation that the trapping of defects at oxide metal interfaces in ODS steel will also 
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enhance defect recombination and reduce radiation damage. However, there has been only 
a limited number of simulations to date and a more comprehensive study of the effect of 
grain boundaries and other interfaces would help towards the extrapolation to engineering 
materials.   

A related, but just as significant, issue is the effect of radiation damage on the 
microstructure of materials. This goes beyond the production of defect clusters and bubbles 
that contribute to embrittlement by interacting with dislocations. It includes effects such as 
precipitation of stable phase particles from supersaturated solution and the dissolution of 
metastable phase particles. Alloy steels contain a wide range of elements to enhance 
properties and aid processing but these additives can form a number of intermetallic phases 
that may precipitate with the help of radiation enhanced diffusion. The microstructure 
evolution in nuclear fuel is an extreme example of how radiation, fission gas production 
and high thermal gradients can transform the microstructure of a ceramic material.   

As discussed above, the electronic effects associated with radiation damage are not 
included in classical MD simulations. The topic attracted attention around 20 years ago but 
it has largely been neglected since, although there has recently been revived interest in the 
topic. The development of ab-initio techniques, such as time-dependent density functional 
theory and time-dependent tight binding (Mason et al., 2007) , has helped in the 
understanding of excited states, but how such excitations affect the radiation damge on the 
timescales associated with MD has largely been unexplored. This field is now ripe for 
development. 

Validation of a computational model by comparison with experimental measurements is 
essential for maximum confidence in the results but this is generally challenging due to the 
widely different length and time scales involved. The situation is improving due to the 
development of in situ transmission electron microscopy where samples can be observed 
by TEM during ion bombardment and this enables the development of the microstructure 
to be directly observed. The JANNUS multibeam experimental facility (Serruys et al., 
2009) is one example of a facility that is devoted to promoting interaction between 
modelling and experiment.  

In summary, the time and length scales that can be studied using classical MD simulations 
make it suitable for the calculation of the primary damage produced by an irradiation event. 
However, more research and development are required, particularly in areas of interatomic 
potentials and the description of electronic effects, to improve the predictive nature of the 
models. 
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5.1. Introduction  

Many important processes in materials systems are intrinsically atomistic in nature but 
involve time scales that span many orders of magnitude, thus exceeding what can be 
directly simulated using molecular dynamics (MD). This is especially true for materials in 
nuclear energy applications, in which defects created by collision cascades on the 
femtosecond-picosecond time scale cause microstructural changes that continue to evolve 
for years, in many cases leading to failure of the material. In this chapter, we review 
atomistic methods for reaching long-time scales in systems like these. These accelerated 
MD and adaptive kinetic Monte Carlo (aKMC) methods exploit the infrequent-event nature 
of the diffusive events that comprise this long-time evolution. In favourable cases, these 
methods can predict state-to-state evolution that approximates what would result from an 
extremely long molecular dynamics simulation, and the most accurate of the methods can 
do this to arbitrary accuracy. We present some examples of applications of these methods 
to problems relevant to nuclear energy materials, the subject of this volume. We then 
discuss situations that are difficult for the methods, causing them to be less efficient, and 
we conclude with a short list of the most pressing issues in the further development of these 
approaches to make them as powerful and predictive as possible for realistic problems. 

The evolution of radiation damage in materials spans many time and length scales. While 
the initial damage production occurs on the atomic scale over picoseconds via collision 
cascades, the damage ultimately manifests itself macroscopically, often in the form of 
swelling or cracking, which can take years to develop. There is a wide range of phenomena 
that bridge these two extremes, including defect diffusion, annihilation and aggregation, 
the formation of interstitial loops and voids, and the development of a more complex 
microstructure. As a result, no one simulation method can be employed to study the 
problem of radiation damage on all relevant time and length scales. Rather, a combination 
of many techniques must be used to address this problem. MD simulation, in which atom 
positions are evolved by integrating the classical equations of motion in time, can probe 
timescales of ps to ns, making it ideal for studying collision cascades. The initial, post-
thermal-spike damage produced in the collision cascade can be directly simulated using 
MD. However, once that damage has been formed, diffusion and subsequent annihilation 
or aggregation of those defects can occur on much longer time scales, perhaps even seconds 
or beyond, depending on the conditions (temperature, pressure, etc.) and the material. Such 
phenomena must be accounted for to accurately predict the formation and evolution of 
larger scale features such as interstitial dislocation loops and vacancy voids. These are 
important in the evolving microstructure, leading to the macroscopic response to radiation 
damage such as swelling and cracking. While at some larger time and length scale, the 
material evolution can be described by higher-level models, for much longer times than the 
sub-microsecond time scale that direct MD can reach, full atomistic simulation is necessary 
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to understand the complex and often competing phenomena that must be accounted for and 
quantified to parameterise these higher-level models. 

In this chapter we discuss some methods developed over the past 20 years for reaching 
these longer time scales without sacrificing atomistic detail or dynamical accuracy. These 
long-time methods work for infrequent-event systems, in which the system spends a long 
period of time in a given state (typically corresponding to a particular basin of the potential 
energy surface), occasionally making a transition to a neighbouring state (e.g. through the 
motion of a defect). These transitions are usually activated processes, whose rate is limited 
by a potential energy barrier. The characteristic that the state residence time is much longer 
than the time duration of the transition event (typically 1 ps) is what defines these as 
infrequent-event systems. 

These long-time methods are most valuable for treating what we often term “complex 
infrequent event systems," and many if not most radiation damage systems fall into this 
class. These are characterised by an interplay of reaction pathways with different activation 
energies (and hence different temperature dependences), so that one cannot simply raise 
the temperature of the system to accelerate the dynamics in a meaningful way, and 
transition pathways that are complicated enough that many important pathways might be 
omitted if one resorts to a simple model (e.g. lattice-based kinetic Monte Carlo (KMC) with 
a pre-calculated rate catalogue). The point of these long-time-dynamics methods is that 
they do not make assumptions about transition pathways or the nature of the states, 
assumptions that would limit their accuracy. Consequently, these methods give dynamical 
evolution from state to state that is roughly the same as that of a very long direct-MD 
simulation. For the most accurate of these methods, parallel replica dynamics, the state-to-
state evolution can be made arbitrarily accurate. 

These methods generally fall into two classes: accelerated molecular dynamics (AMD) 
methods and aKMC approaches. In the AMD approach, the key concept is to let the 
trajectory find its own way out of the current state of the system – as a trajectory in a 
standard MD simulation would – but to coax it into to finding this escape pathway more 
quickly. The methods in this class are parallel replica dynamics (Section 5.3) 
hyperdynamics (Section 5.4), and temperature accelerated dynamics (Section 5.5). The 
aKMC approach, described in Section 5.6, is a generalisation of standard KMC. The goal 
in aKMC is to find all possible, or all relevant, escape pathways from the current state of 
the system, typically by performing a set of saddle-point searches. One of these pathways 
is then selected to move the system to the next state. In Section 5.7. we briefly describe a 
very recently developed method in this long-time simulation class, κ-dynamics. 

After presentation of the methods and a review of some recent advances in Sections 5.3. 
through 5.7., in Section 5.8. we give some examples of applications of these methods to 
problems relevant for nuclear materials. We note that some of the method presentation 
draws from another review we wrote recently (Perez et al., 2009). We then conclude in 
Sections 5.9. and 5.10. with a discussion of the current limitations of these methods and the 
areas in which we believe further development is needed to make the methods maximally 
useful for simulating atomistic evolution in nuclear energy materials. 

Due to space constraints, the descriptions of the methods that follow omit many 
foundational details. The interested reader is encouraged to consult the original references 
(e.g. Voter, 1998, 1997a, 1997b; Sørensen, Voter, 2000; Henkelman, Jónsson, 2001, Lu, 
Makarov, Henkelman, 2010) or more in-depth review articles (e.g. Uberuaga et al., 2005a; 
Voter, 2006) for a more thorough treatment. The reader can also find some more discussion 
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of the relative merits of the methods and how to choose the best method for a particular 
problem in Uberuaga and Voter (2006). 

Finally, we note that the manuscript for this chapter was prepared in 2013, but not published 
until 2020. We have left the main body of the chapter largely unchanged, as we believe it 
still represents a valuable introduction to the methods and review of how they can be 
applied to nuclear-energy materials. We have added a short section near the end of the 
chapter that describes the important developments in the past five years. 

5.2. Parallel replica dynamics 

Parallel replica dynamics (ParRep) is the most general and accurate of the AMD methods. 
It assumes only that the system will escape from the current state in a way that obeys first-
order kinetics; i.e. for any trajectory that has been in a state long enough to have lost its 
memory of how it entered the state (longer than the correlation time τcorr), the probability 
distribution function for the time of the next escape from that state is given by 

 𝑒𝑒(𝑑𝑑) = 𝑘𝑘𝑒𝑒−𝑘𝑘𝑡𝑡, (1) 

where k is the rate constant for escape from the state. ParRep allows for the temporal 
parallelisation of the state-to-state dynamics of such a system on M processors. This is to 
be contrasted with standard parallelisations of MD simulations in which spatial 
decomposition schemes are used. 

We briefly sketch the derivation here. For a state in which the total rate of escape is k, 
simultaneously explored on M processors, the effective escape rate for the first escape of 
any replica is Mk. If the simulation time accumulated on one processor is t, the total time 
on the M processors will then be tsum = Mt. Thus, using a simple change of variable, p(t) 
can be written as 

 𝑒𝑒(𝑑𝑑)𝑑𝑑𝑑𝑑 = 𝑀𝑀𝑘𝑘𝑒𝑒−𝑀𝑀𝑘𝑘𝑡𝑡𝑑𝑑𝑑𝑑 (2a) 

 = 𝑘𝑘𝑒𝑒−𝑘𝑘𝑡𝑡𝑠𝑠𝑠𝑠𝑚𝑚𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑚𝑚   (2b) 

 = 𝑒𝑒(𝑑𝑑𝑠𝑠𝑠𝑠𝑚𝑚)𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑚𝑚 , (2c) 

implying that the probability to leave the state per unit MD time is the same whether that 
time is accumulated on one or M processors. While this sketched derivation applies for 
processors of equal speed, we emphasise that the same conclusion can be shown to be valid 
even if the processors run at different speeds and/or with time-varying speeds (Voter, 
1998). 

Figure 5.1. shows a schematic of the algorithm. Starting with a system in a particular state, 
it is replicated on each of the M processors. Each replica, after an independent random 
momentum assignment, is evolved forward for a time Δtdeph ≥ τcorr to eliminate correlations 
between replicas, a stage referred to as dephasing. After dephasing, each processor carries 
out an independent MD trajectory, typically performed at a constant temperature. Together, 
the trajectories explore phase space within the particular basin M times faster than a single 
trajectory would. Once a transition is detected on any processor, all processors are stopped. 
The simulation clock is then advanced by tsum, the accumulated trajectory time summed 
over all replicas until the first transition occurred. 
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Figure 5.1. Schematic illustration of the parallel replica dynamics method 

 
Note: The four steps, described in the text, are (A) replication of the system into M copies, (B) dephasing of 
the replicas, (C) propagation of independent trajectories until a transition is detected in any of the replicas, and 
(D) brief continuation of the transitioning trajectory to allow for correlated events such as recrossings or follow-
on transitions to other states. The resulting configuration is then replicated, beginning the process again. 
Source: Motalenti and German, 2002  

ParRep also correctly accounts for correlated dynamical events (Chandler, 1978; Voter 
Doll, 1985), i.e. there is no requirement that the system obeys transition state theory 
(Marcelin, 1915; Wigner, 1932; Eyring, 1935; Pechukas, 1981), unlike the other AMD 
methods (or aKMC). This is accomplished by allowing the trajectory that made the 
transition to continue for a further amount of time Δtdeph ≥ τcorr, during which recrossings 
or follow-on events may occur. The simulation clock is then advanced by Δtcorr, the new 
state is replicated on all processors, and the whole process is repeated. 

The computational efficiency of the method is limited by both the dephasing stage, which 
does not advance the system clock, and the correlated event stage, during which only one 
processor accumulates time. (This is illustrated schematically in Figure 5.1., where dashed 
line trajectories advance the simulation clock but dotted line trajectories do not.) Thus, the 
overall efficiency will be high when 

 𝜏𝜏𝑟𝑟𝑟𝑟𝑛𝑛 
𝑀𝑀

≫ Δ𝑑𝑑𝑑𝑑𝑒𝑒𝑝𝑝ℎ + Δ𝑑𝑑𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 , (5) 

where τrxn = 1/k. 

An extension to ParRep allows the method to be applied to driven systems (Uberuaga, 
Stuart, Voter, 2007). To result in valid dynamics, the processors must run at the same speed, 
and the drive rate must be slow enough that at any given time the rates for the different 
escape pathways in the system depend only on the instantaneous configuration of the 
system. 

While the derivation of the ParRep method does not impose a particular definition of a 
“state” of the system, the operational definition often used in practice corresponds to a 
single basin of the potential energy surface, i.e. a state is taken to be the ensemble of points 
of configuration space that converge to the same fixed point under a local minimisation of 
the energy of the system (e.g. using a steepest-descent algorithm). An exponential 
distribution of escape times is then obtained if the typical timescale for a transition out of 
the state is long compared to the characteristic vibrational period of the system around that 
fixed point. While this definition has the virtue of being conceptually and computationally 
simple, it limits the range of possible applications to systems where the basins are deep 
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enough (relative to kBT) and well separated from each other and leaves many other, more 
complex, systems out of reach. This limitation can sometimes be overcome by a more 
general definition of a state. For example, in the case of pyrolysis of hexadecane, it was 
shown that states could be defined as the ensemble of all configuration space points that 
share the same network of covalent bonds (Kum et al., 2004). In that case, these 
“superstates” contain a large number of simple energy basins of the potential energy 
surface, each corresponding to a different conformation of the molecular backbone. There, 
the method exploited the separation of timescale between the rapid changes of dihedral 
angles of the backbone (intrasuperstate transitions) and the slow covalent bond breaking 
process (intersuperstate transitions) rather than between the vibrational timescale and that 
of sampling of the different dihedral angles. This enables one to ignore the “irrelevant” fast 
transitions that would demand incessant dephasing and decorrelation and concentrate 
directly on the real kinetic bottlenecks. This approach has been applied to other cases as 
well, such as surface diffusion kinetics while the surface is in contact with a liquid phase 
(with its huge number of shallow states) (Perez et al., 2009) and diffusion of heteroepitaxial 
surface clusters in metallic systems (Uche et al., 2009). This approach was recently 
mathematically formalised (Le Bris et al., 2012), showing that the ParRep procedure gives 
correct results for arbitrary state definitions, provided the dephasing and decorrelation 
times are made long enough. 

We will give specific examples below of the application of ParRep in situations relevant to 
nuclear energy materials, but we mention here that ParRep dynamics has been successfully 
applied to a number of varied problems, including the diffusion of H2 in crystalline 
C60 (Uberuanga et al., 2003a), the pyrolysis of hexadecane (Kum et al., 2004), the diffusion 
of defects in plutonium (Uberuanga et al., 2003b), the transformation of voids into stacking 
fault tetrahedra in face centred cubic (fcc) metals (Uberuaga et al., 2007a), the stretching 
of carbon nanotubes (Uberuaga, Stuart, Voter, 2007), grain boundary sliding in Cu (Mishin 
et al., 2007), friction-force microscopy (Martini et al., 2009; Dong et al., 2011), the 
diffusion of Li through a polymer matrix (Duan et al., 2005), the fracture process in metals 
(Warner, Curtin, Qu, 2007), and the folding dynamics of small proteins (Zagrovic, Sorin, 
Pande, 2001). As parallel-computing environments become even more common, ParRep 
will become an increasingly important tool for reaching long-time scales in complex 
infrequent-event systems. 

5.3. Hyperdynamics 

Another way to accelerate the state-to-state evolution of an infrequent-event system is to 
construct an auxiliary system in such a way that the escape dynamics of the latter are faster 
than those of the former, while enforcing that one maps onto the other by a suitable 
renormalisation of time. Hyperdynamics (Voter, 1997a) realises this objective by building 
on the concept of importance sampling (Valleau, Whittington, 1977; Berne, Ciccotti, 
Coker, 1998) and extending it into the time domain. In this approach, the auxiliary system 
is obtained by adding a non-negative bias potential ΔVb(r) to the potential of the original 
system V(r) so that, effectively, the height of the barriers between different states is 
reduced, as schematically shown in Figure 5.2. The relationship between the dynamical 
evolution of the original and biased systems is recovered using transition state theory 
(TST). According to TST, the rate of escape of the original system out of a given state A is 
given by 

 𝑘𝑘𝐴𝐴→𝑇𝑇𝑇𝑇𝑇𝑇 =< |𝑣𝑣𝐴𝐴|𝛿𝛿𝐴𝐴(𝒓𝒓) >𝐴𝐴 (6) 
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where δA(r) is a Dirac delta function centred on the dividing surface between state A and 
the neighbouring state(s) (here the hypersurface is at r = 0), vA is the velocity normal to it 
and ⟨P⟩A is the canonical ensemble average of a quantity P for a system confined to state 
A. By standard importance sampling manipulations, the last equation can be recast in a 
form where the averages are obtained on the biased potential instead. We find: 

 𝑘𝑘𝐴𝐴→𝑇𝑇𝑇𝑇𝑇𝑇 =  
< |𝑣𝑣𝐴𝐴|𝛿𝛿𝐴𝐴(𝒓𝒓)𝑒𝑒𝛽𝛽∆𝑉𝑉𝑏𝑏(𝑟𝑟) >𝐴𝐴𝑏𝑏

< 𝑒𝑒𝛽𝛽∆𝑉𝑉𝑏𝑏(𝑟𝑟) >𝐴𝐴𝑏𝑏
 , (7) 

where β = 1/kBT and kB is the Boltzmann constant. If we impose the condition that the bias 
potential must vanish at the dividing surface, the last equation can be rewritten as  

 𝑘𝑘𝐴𝐴→𝑇𝑇𝑇𝑇𝑇𝑇 =  
< |𝑣𝑣𝐴𝐴|𝛿𝛿𝐴𝐴(𝒓𝒓) >𝐴𝐴𝑏𝑏
< 𝑒𝑒𝛽𝛽∆𝑉𝑉𝑏𝑏(𝑟𝑟) >𝐴𝐴𝑏𝑏

 .  (8) 

This result is very appealing since the relative rates of escapes from A to other states is 
invariant under the addition of the bias potential, i.e.  

 
𝑘𝑘𝐴𝐴𝑏𝑏→𝐵𝐵
𝑇𝑇𝑇𝑇𝑇𝑇

𝑘𝑘𝐴𝐴𝑏𝑏→𝐶𝐶
𝑇𝑇𝑇𝑇𝑇𝑇 =

𝑘𝑘𝐴𝐴→𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇

𝑘𝑘𝐴𝐴→𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇  . (9) 

Thus, the state-to-state dynamics on the biased potential is equivalent to that on the original 
potential as long as the time in each state is renormalised to account for the uniform relative 
increase of all the rates introduced by the biased potential. This rescaling of time is obtained 
by multiplying the MD timestep ΔtMD by the inverse Boltzmann factor for the bias potential, 
so that n MD timesteps on the biased potential are equivalent to an elapsed time of 

 𝑑𝑑hyper = �∆𝑑𝑑𝑀𝑀𝐷𝐷𝑒𝑒𝛽𝛽∆𝑉𝑉𝑏𝑏�𝒓𝒓�𝑡𝑡𝑖𝑖��
𝑛𝑛

𝑗𝑗=1

 (10) 

 

on the original potential. Even though the speedup is typically different for each state, this 
definition of the hypertime gives an ongoing estimate of the accelerated time with statistical 
error bars that are unbiased, and in the long-time limit (e.g. after many transitions) it 
converges on the exact value with vanishing relative error. The speedup for escape from 
state A is given by the average boost factor B, 

 𝐵𝐵hyper =  
𝑑𝑑hyper

𝑑𝑑𝑀𝑀𝐷𝐷
 = < 𝑒𝑒𝛽𝛽∆𝑉𝑉(𝒓𝒓) >𝐴𝐴𝑏𝑏 , (11) 

and the overall computational boost is this boost divided by the relative extra cost of 
calculating the bias potential and associated forces. 

If both the original and biased systems obey TST and the bias potential is zero on all the 
ridgetops, so that the above derivation holds, hyperdynamics can provide considerable, 
accurate time acceleration compared to direct-MD simulations. It has been successfully 
applied to a variety of systems, including desorption of organic molecules from graphitic 
substrates (Beker, Mignogna, Fichthorn, 2009), surface diffusion of metallic clusters 
(Voter, 1997b), heteroepitaxial growth (Miron, Fichthorn, 2005), microscopic studies of 
sliding friction (Kim, Falk, 2010, 2011), plastic response of compressed nanopillars (Hara, 
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Li, 2010) and the dynamics of biomolecules (Hamelberg, Mongag, McCammon, 2004; 
Xin, Doshi, Hamelberg, 2010). 

Figure 5.2. Schematic illustration of the hyperdynamics method 

A bias potential (∆V(r)), is added to the original potential (V(r), solid line). Provided that ∆V(r) meets certain 
conditions, primarily that it be zero at the dividing surfaces between states, a trajectory on the biased potential 
surface (V(r)+∆V(r), dashed line) escapes more rapidly from each state without corrupting the relative escape 

probabilities. The accelerated time is estimated as the simulation proceeds.  

 
Source: Uberuaga et al., 2019 

In practice, the applicability of hyperdynamics is limited by the availability of bias 
potentials that meet the necessary requirements and have reasonable computational 
overhead. The construction of bias potentials that are valid, efficient and transferable 
remains a challenge and a subject of active research. A review of bias potential forms as of 
2002, such as the Hessian-based bias (Vote, 1997b) and the flat bias (Steiner, Genilloud, 
Wilkins, 1998), can be found in Voter, Montalenti and Germann (2002). 

An important advance on this front was taken by Miron and Fichthorn, with the 
introduction of their “bond-boost” bias potential (2003). As the name suggests, the bond-
boost bias potential is composed of pairwise terms that tend to soften the bonds between 
atoms. The key assumption here is that transitions between states will involve the formation 
or breaking of some bond so that the proximity to a transition state will be signalled by an 
unusually large distortion of a bond. If the overall bias potential is then designed to vanish 
when any bond in the system distorts by more than some critical amount (say by more than 
20% of its equilibrium length), then it should be possible to safely turn off the bias before 
a dividing surface is reached. While this approach relies on the assumption that bond 
lengths alone are reliable indicators of the distance to a potential energy ridge, it provides 
a very flexible and efficient way to carry out hyperdynamics. 

The flexibility of this bond-boost approach can be further exploited to make hyperdynamics 
more tolerant to low barriers. Indeed, the presence of low barriers is detrimental to the 
performance of hyperdynamics because it will frequently cause the bias potential to vanish. 
In cases where appropriate “superstates” can be defined, it is possible to leave the bias 
potential turned on when the system crosses intrasuperstate barriers without affecting the 
accuracy of the simulation. This power of this promising type of “bridging” approach, 



88 │ NEA/NSC/R(2019)2 
 

STATE-OF-THE-ART REPORT ON MULTI-SCALE MODELLING METHODS 
      

proposed by Miron and Fichthorn (2004), has been demonstrated for deposition of Co on 
Cu(100) (Miron, Fitchorn, 2005). 

Hamelberg et al (2004) have developed a variation on Steiner’s flat bias (Steiner, 
Genilloud, Wilkins, 1998) that is effective for accelerating the dynamics in biomolecules. 
The rugged landscape makes these very challenging systems for accelerated dynamics, and 
this bias is typically applied aggressively enough that the bias potential is not zero at all the 
key barriers. Hamelberg and co-workers (Xin, Doshi, Hamelberg, 2010) have recently 
developed a way to extract the correct rate constant for a known pathway by appealing to 
Kramers rate theory after performing multiple hyperdynamics simulations with bias 
potentials that are non-zero at the dividing surface. 

Hara and Li (2010) developed a bias potential to accelerate the nucleation of dislocations 
in a system under stress, by constructing a form that is sensitive to the local shear distortion, 
turning off when it reaches a critical value. Although this mechanism-specific approach 
runs the risk of slowing the rates for processes that the tailored bias is insensitive to 
(because the bias may be non-zero at the dividing surfaces for these other processes), this 
can be a powerful approach. They achieved boost factors greater than 1010 in simulations 
of compressed nanopillars. Kim and Falk (2010, 2011) have developed bias potentials 
suitable for the study of microscopic sliding friction, and have shown how in a driven 
system, hyperdynamics can be effectively combined with parallel computation by 
speculatively simulating future system configurations. Fichthorn and co-workers (2009) 
have demonstrated that hyperdynamics can be carried out with electronic-structure-based 
forces, although the much greater expense of electronic structure calculations compared to 
empirical potentials means that with present-day computers and electronic structure 
methods, this is barely viable for most systems. 

Chen and Horing (2007) have proposed a variation on the hyperdynamics approach, path 
integral hyperdynamics (PIHD), which releases the requirements on the bias potential. The 
bias is allowed to be non-zero at the dividing surfaces, and TST-violating correlated events 
are allowed as well. These effects are properly accounted by appealing to a Langevin path 
integral formalism to define a weight for each trajectory. As such, the calculation of the 
rate constant for a given rare event requires multiple simulations, in contrast to the standard 
hyperdynamics where a single trajectory is representative of the long-time evolution. 
Recently, this PIHD approach has been shown to provide an effective strategy in a study 
of diffusion in a periodic potential, including the case of a time-dependent forcing (Ikonen 
et al., 2011), and in a study of barrier crossing by self-avoiding polymer chains (Shin et al., 
2010). 

5.4. Temperature accelerated dynamics 

One natural way of speeding up the dynamics of a system is to simply raise the temperature. 
However, while the rates of processes will increase with higher temperatures, the relative 
probabilities of different events occurring will be different than at the original temperature 
of interest. Correcting for this reordering is the basic idea behind temperature accelerated 
dynamics (TAD) (Sørensen, Voter, 2000). In TAD, transitions are sped up by increasing 
the temperature to some Thigh, but transitions that should not have occurred at the original 
temperature Tlow are filtered out. The TAD method assumes that the system obeys harmonic 
TST (Vineyard, 1957), in which the transition pathway is associated with a saddle point on 
the energy landscape, and the rate constant has a simple Arrhenius temperature dependence 
with a fixed prefactor. As a result, TAD is more approximate than the other AMD methods. 
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However, for many applications, especially in solids, this additional approximation is 
acceptable. 

In each basin, the system is evolved at Thigh. When a transition is detected, the saddle point 
for that transition is found. The trajectory is then reflected back into the basin and 
continued. This procedure is referred to as “basin constrained molecular dynamics” 
(BCMD). During the BCMD, a list of escape paths and escape times at Thigh for each 
pathway is generated. Assuming that harmonic TST holds, and knowing the saddle point 
energy for the transition, we can then extrapolate each escape time observed at Thigh to 
obtain a corresponding escape time at Tlow. This extrapolation, which does not require 
knowing the preexponential factor, can be illustrated graphically on an Arrhenius-style plot 
(ln(1/t) vs. 1/T), as shown in Figure 5.3. The time for each event seen at Thigh extrapolated 
to Tlow is 

 𝑑𝑑𝑙𝑙𝑐𝑐𝑤𝑤 = 𝑑𝑑ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝛽𝛽𝑎𝑎(𝛽𝛽𝑙𝑙𝑙𝑙𝑙𝑙−𝛽𝛽ℎ𝑖𝑖𝑖𝑖ℎ) , (12) 

where β = 1/kBT and Ea is the activation energy. 

As the BCMD is continued, a new shorter-time event may be discovered. With the 
additional assumption that there is a minimum preexponential factor, νmin, which bounds 
from below all the preexponential factors in the system, we can define a time at which the 
BCMD trajectory can be stopped. This time has the property that the probability any 
transition observed later would replace the first transition at Tlow is less than δ, an 
uncertainty set by the user. This “stop” time is given by 

 𝑑𝑑ℎ𝑖𝑖𝑖𝑖ℎ,𝑠𝑠𝑡𝑡𝑐𝑐𝑝𝑝 ≡
ln(1 𝛿𝛿⁄ )
𝜈𝜈𝑚𝑚𝑖𝑖𝑛𝑛

�
𝜈𝜈𝑚𝑚𝑖𝑖𝑛𝑛𝑑𝑑𝑙𝑙𝑐𝑐𝑤𝑤,𝑠𝑠ℎ𝑐𝑐𝑟𝑟𝑡𝑡

ln(1 𝛿𝛿⁄ ) � , (13) 

where tlow, short is the shortest transition time at Tlow. When this stop time is reached, the 
system clock is advanced by tlow, short, and the corresponding transition is accepted. The TAD 
procedure is then started again in the new basin. Thus, in TAD, two parameters govern the 
accuracy of the simulation: δ and νmin. 

The average boost in TAD can be dramatic when barriers are high and Thigh/Tlow is large. 
However, as TAD relies upon harmonic TST for validity, any anharmonicity error at Thigh 
will lead to inaccuracy in the predicted dynamics. This anharmonicity error can be 
controlled by choosing a Thigh that is not too high. 

A number of advances have led to increased efficiency in particular systems. “Synthetic” 
mode (Sørensen, Voter, 2000), a KMC treatment of low-barrier transitions, can 
significantly improve the efficiency in cases where low-barrier events are repeated often. 
Furthermore, if we know something about the minimum barrier to leave a given state, either 
because we have visited the state before and have a lower bound on this minimum barrier 
or because the minimum barrier is supplied a priori, we can accept a transition and leave 
the state earlier than the time given by equation (13). See Montalenti and Voter (2002) for 
details. 

The AMD methods in general do not scale particularly well with system size, but Shim et 
al. (2007, 2008) have recently shown how the TAD method can be spatially parallelised, 
to make it more efficient for larger systems. 

Temperature accelerated dynamics has been demonstrated to be very effective for studying 
the long-time behaviour of defects produced by collision cascades in some 
ceramics (Uberuaga et al., 2004, 2007b), and more nuclear material applications will be 
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discussed below. Coupled with MD simulation of surface deposition events, TAD has been 
applied to simulate the long-time-scale growth of Ag (Mishin, Sørensen, Voter, 2001), 
Cu (Shim et al., 2008), Cu on Ag(100) (Sprague et al., 2002), and magnetron sputter-
deposition growth of Mg-Al-O thin films (Georgieva, Voter, Bogaerts, 2011). Other 
applications for which TAD has proven effective include defect diffusion on oxide 
surfaces (Harris et al., 2004), the dissolution of boron-interstitial clusters in silicon (Cogoni 
et al., 2005), and topological changes in carbon nanotube fragments at high 
temperature (Uberuaga et al, 2012). Tsalikis et al., (2010a) have recently combined TAD 
with advanced sampling techniques to study long-time dynamical properties of glass-
forming systems. 

Figure 5.3. Schematic illustration of the temperature accelerated dynamics method 

 

 
Note: Progress of the high-temperature trajectory can be thought of as moving down the vertical time line at 
1/Thigh. For each transition detected during the run, the trajectory is reflected back into the basin, the saddle 
point is found, and the time of the transition (solid dot on left time line) is transformed (arrow) into a time on 
the low-temperature time line. Plotted in this Arrhenius-like form, this transformation is a simple extrapolation 
along a line whose slope is the negative of the barrier height for the event. The dashed termination line connects 
the shortest-time transition recorded so far on the low temperature time line with the confidence-modified 
minimum preexponential (ν⋆min=νmin / ln(1/δ)) on the y axis. The intersection of this line with the high-T time 
line gives the time (tstop, open circle) at which the trajectory can be terminated. With confidence 1-δ, we can 
say that any transition observed after tstop could only extrapolate to a shorter time on the low-T time line if it 
had a preexponential factor lower than νmin. 
Source: Uberuaga et al., 2019 
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5.5. Adaptive kinetic Monte Carlo 

In the aKMC method, the ultimate goal of accelerating the state-to-state dynamics is the 
same as in the AMD methods, but the conceptual approach is different. aKMC is a 
generalisation of the KMCo method (Voter, 2006) which we briefly describe first. 

In KMC, there is no classical trajectory at all. Instead, from a list of possible pathways and 
rates for escape from the current state, one escape path is chosen randomly with a 
probability proportional to its rate constant, and the system is advanced along that path to 
a new state. The clock is then incremented in an appropriate way, by drawing a time from 
the exponential distribution (equation (1)) with exponent equal to the sum of the escape 
rates (Young, Elcock, 1996; Bortz, Kalos, Lebowitz, 1975; Gillespie, 1976). In a typical 
implementation of KMC, sometimes called lattice KMC, it is assumed each atom can be 
associated with a fixed lattice position, and the state-to-state transitions all occur along 
well-understood unit-process pathways. In the bulk, the key unit process is the jump of a 
vacancy, and on a surface, it is the jump of an adatom to an adjacent site. In principle, 
somewhat more complicated unit processes (e.g. surface exchange events (Feilbelman, 
1990)) can be included, but typically they are not. With the additional assumption that the 
rate constant for a unit-process pathway is influenced only by the nearby atomic 
environment, one can compile a list of all possible pathways and their associated rate 
constants, forming a rate catalogue (Voter, 1986) that is used to drive the lattice KMC 
simulation. The rates are usually based on harmonic transition state theory (Vineyard, 
1957), so that a required step is finding the saddle point connecting the initial and final state 
for every entry in the rate catalogue. 

An attractive formal feature of KMC is that if the rate catalogue is complete (all possible 
escape paths from each state are included) and the rate constant for each path is exact 
(which might require going beyond the TST approximation), then the state-to-state 
dynamical evolution for this system of states is exact (Gillespqie, 1976, 1977). In standard 
KMC, however, this exact limit is essentially never achieved, and in most cases probably 
not even well approximated, due to the simplifying on-lattice and unit-process assumptions. 

In the aKMC approach (Henkelman, Jónsson, 2001; Middleton, Wales, 2004; El-Mellouhi, 
Mousseua, Lewis, 2008) the aim is to generate a much more complete rate catalogue. 
Rather than assuming a set of unit-process escape mechanisms, for each state that is visited 
during the simulation, one carries out a systematic search for saddle points corresponding 
to escape paths out of the basin. This can be accomplished efficiently using eigenvector-
following approaches such as the dimer method (Henkelman, Jónsson, 1999; Munro, 
Wales, 1999) or the activation-relaxation technique (Barkeman, Mousseau, 1996; Beland 
et al., 2011). A key advance, relative to the state of the art of the mid-1990s, is that these 
methods only require first derivatives of the potential to find the saddle point. When this 
type of saddle search is carried out, it is not unusual to find a complex pathway involving 
multiple atoms (e.g. see Henekelman and Jónsson (1999)), and the process may lead to an 
off-lattice geometry as well. This behaviour is consistent with the complex pathways found 
during AMD simulations. 

This aKMC approach comes much closer to the ideal of exact KMC than the lattice KMC 
described above. The more searches that are performed, the more complete the aKMC 
catalogue for the current state is, and the more likely that a kinetically appropriate pathway 
is selected for the next event. Although it is difficult, if not impossible, to prove that all 
saddle points surrounding a basin can be found in a finite number of searches, Henkelman 
has recently discussed how to approximate the confidence that the relevant saddles have 
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been found after a certain number of randomly initialised saddle searches, by monitoring 
the rate, per search, at which redundant saddles are found (Xu, Henkelman, 2008). 

The computational efficiency of aKMC can be increased in several ways. It can be readily 
parallelised by performing saddle searches independently on different processors. Also, for 
large systems, each search can be spatially localised to a subset of the system, although this 
should be done with care, to avoid missing pathways that are more delocalised than 
expected. Storing information about each state allows substantial savings when a state is 
revisited (as is true for all the methods discussed in this chapter), and combining this with 
the localisation concept and pattern recognition techniques can lead to significant 
computational gain when locally equivalent, or locally similar, defects are identified (El-
Mellouhi, Mousseau, 2008; Xu, Henkelman, 2008; Konwar, Bhute, Chatterjee, 2011). 

The aKMC approach has been applied to a variety of processes, including post-cascade 
defect evolution (Xy, Stoller, Osetsky, 2013), surface diffusion and growth of metal 
surfaces (Xu, Henkelman, 2008; Konwar, Bhute, Chatterjee, 2011; Henkelman, Jónsson, 
2003; Scott et al., 2011), surface erosion by sputtering (Henkelman, Jónsson, 2003), self-
diffusion in copper grain boundaries (Pedersen et al., 2009), decomposition of methanol on 
Cu(100) (Xu, Mei, Henkelman, 2009), elastic effects on the diffusion of vacancies in 
silicon (El-Mellouhi, Mousseau, 2008), and kinetics in a model glass-forming 
system (Middleton, Wales, 2004). Using a related approach, an off-lattice self-learning 
KMC developed specifically for surfaces, Rahman and co-workers have studied surface 
diffusion of clusters on fcc(111) (Kara et al., 2009). Henkelman’s group has discussed the 
use of electronic structure forces with aKMC (Xu, Henkelman, 2008), and shown that they 
can be implemented effectively, although this remains very computationally expensive. 
Jónsson and co-workers (Henkelman, Jónsson, 2003; Pedersen, Jónsson, 2010) have 
discussed the effective use of aKMC in a distributed computing environment. 

5.6. κ-Dynamics 

Here we briefly describe a promising approach to long-time dynamics developed by Lu, 
Makarov and Henkelman (2001), which they term κ-dynamics. Building on the concept 
that trajectories initiated at an arbitrary TST dividing surface offer a way to recover the 
exact rate constants for an infrequent-event system (Voter, Doll, 1985), they have designed 
a method that combines importance sampling with parallelised dividing-surface trajectories 
to give accelerated state-to-state transitions. They start by specifying a dividing surface that 
totally encloses the initial state of the system, and which would be infrequently reached by 
a standard trajectory. Although the efficiency would be higher if this dividing surface was 
close to the ridgetop surrounding the state, it is not a formal requirement of the method. 
Hence, simple and tractable definitions can be used to approximate this exceedingly 
complex ideal surface. Using importance sampling, the TST rate constant for escape 
through this dividing surface is determined, and a set of representative points on this surface 
(i.e. Boltzmann distributed within this dividing surface subspace) are generated. These 
representative points are used as the starting points for trajectories that are run forward and 
backward in time as far as necessary to determine whether an escape trajectory has been 
found. An escape trajectory is one that in the outgoing direction proceeds directly to some 
new state of the system without recrossing the surface, and in the reverse direction settles 
into the initial state before deeply entering any other states, perhaps after some number of 
recrossings. Although many trajectories may be required before an escape trajectory is 
found, this stage of the simulation is parallelisable, as is the importance sampling. In the 
limit where the importance sampling produces a perfectly unbiased set of starting points on 
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the dividing surface, κ-dynamics gives correct state-to-state dynamics. Using a bond-boost 
bias potential form for their importance sampling, Lu et al (2010) applied this approach to 
surface diffusion events on an Al(100) surface, demonstrating its accuracy, as well as its 
ability to properly describe important events in which the final state is not connected to the 
initial state, which requires that correlated dynamical events are treated correctly. Of the 
AMD and aKMC methods discussed in this chapter, only ParRep and κ-dynamics can treat 
these correlated events correctly (although in hyperdynamics these correlated events can 
occur, and may be approximately correct). 

5.7. Example applications 

Long-time dynamics methods have been used to examine a number of phenomena in 
nuclear materials or model materials meant to give basic insight that is applicable to nuclear 
materials. Here we describe three examples of such simulations and how they provided 
new insight into the properties and behaviour of these materials. In each of these example 
cases, an AMD method was employed, but except for the first case (void transformation), 
in which correlated dynamical events were important, similar results could have been 
obtained using an aKMC approach. 

5.7.1. Void evolution in fcc metals 
At high temperatures, the defects produced under irradiation can aggregate, leading to 
detrimental effects such as swelling. This occurs when a vacancy bias is produced as a 
consequence of interstitials effectively being removed from the system via the formation 
of interstitial loops. While it is in fact the loops themselves that cause the swelling, the 
characteristic signature of this effect is the formation of voids from the aggregation of the 
excess vacancies. On very long-time scales, these voids can diffuse and aggregate to form 
even larger clusters. Using AMD methods, primarily parallel replica, we examined the 
long-time behaviour of voids in both Cu, as a simple model fcc material, and Pu. 

These simulations revealed surprising behaviour. It had been assumed in the literature that 
once voids form, they could not transform to other types of vacancy clusters, such as 
stacking fault tetrahedra (SFTs), as the barrier for that transformation was considered too 
high (Zinkel, Seitzman, Wolfer, 1987). However, as described in Uberuaga, et al. (2007a) 
and shown in Figure 5.4., we found that there is such a high entropic preference for the SFT 
that the free energy barrier at temperatures of 475 K was very small, meaning that the 
transformation can occur on the timescale of microseconds at that temperature. As shown 
in Figure 5.4., from an energy landscape perspective, the transformation is very 
complicated, with many local minima connected by a variety of barrier heights. However, 
once the process begins, the entropic driving force is so strong that it happens very quickly 
on an MD time scale. That is, the system does not thermalise within each local minimum, 
but rather progresses very quickly along the collection of states connecting the initial void 
and the final SFT. This illustrates the complexity of the types of processes that can be found 
via the AMD methods, but also the potential dangers of simulating these types of systems: 
a method that effectively thermalised the system within each and every state (such as a 
KMC simulation based upon this landscape) would most likely result in the wrong 
dynamics. This transformation happens in both Cu and Pu (Uberuaga, Valone, 2008). It is 
interesting to note that repeating this simulation with even a single He atom placed in the 
centre of the void significantly slows down the transformation. 
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Figure 5.4. Transformation pathway of a 45-vacancy void to a stacking fault tetrahedron at 
T=475 K 

 
Note: The figures show the structure of the vacancy cluster as the transformation proceeds. Red spheres are 
vacancies and blue spheres are interstitials, as determined by comparison to the perfect fcc lattice. The blue 
points and solid line represent the energy profile for the process. The red points are an estimate of the free 
energy profile along the path. The large difference between the two is a consequence of the large change in 
entropy that results from the collapse of the void.  
Source: Uberuaga et al. 2007a  

5.7.2. Non-equilibrium transport processes 
Under irradiation, extremely large amounts of energy are deposited into the material, 
leading to mass transport mechanisms that would essentially be irrelevant under 
equilibrium conditions. This effect can take two forms. First, the defect configuration 
produced directly by the cascade might be metastable, having kinetic properties 
significantly different than the equilibrium structure. Second, as the defects produced 
during collision cascades aggregate, they may form structures that are high in energy, again 
metastable, but that also have unique kinetics. 

Two examples illustrate these effects. In the case of the fissioning of U in UO2, fission 
products are generated with large amounts of energy. When the fission product is Xe, the 
equilibrium configuration is a substitution on the U sublattice. However, after a fission 
event, the final state of the Xe atom depends on the available defects and MD simulations 
have shown that the final position of the Xe atom can be either interstitial or 
substitutional (Parfitt, Grimes, 2009). Most studies of Xe diffusion in bulk UO2 have 
focused on the substitutional state as it is the most thermodynamically favoured. However, 
based on these MD simulations, we examined the mobility of interstitial Xe using basin 
constrained MD, the foundation of TAD (Liu et al., 2011). We found that Xe can diffuse 
much faster interstitially than it can substitutionally via a complex concerted mechanism 
on the oxygen sublattice. In this mechanism, Xe pushes out one oxygen, replacing it, and 
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then is pushed back out into a new interstitial site. This process has a barrier significantly 
lower than vacancy-assisted diffusion and may be very important for Xe transport in-
reactor, where Xe diffusion is known to be much faster than expected based on equilibrium 
transport measurements. 

A second example, illustrated in Figure 5.5., involves the aggregation of defects in MgO, 
chosen here as a model oxide to understand radiation effects, though MgO also has been 
proposed as a material in some advanced fuel concepts. Using a combination of MD and 
TAD, we examined the clustering of defects produced during collision cascades (Uberuaga 
et al., 2004; 2005b; 2006). We found that large interstitial clusters could adopt a number of 
structural variants and that higher energy structures, structures that would have essentially 
zero concentration at equilibrium, can form as a consequence of aggregation reactions and 
that these high-energy clusters are very mobile. In fact, the fastest diffusing species we 
have seen in MgO is a metastable structure of the six-interstitial cluster, which diffuses on 
the ns time scale at room temperature. In contrast, the ground state structure of this same 
six-interstitial cluster is extremely immobile, with an average hop time measured in years. 

Figure 5.5. Schematic of the energy landscape for five-interstitial clusters in MgO 

 
Note: Red indicates oxy- gen, blue magnesium, dark colours interstitials and light colours vacancies. There are 
at least three structural variants for each of the Mg2O3 and Mg3O2 clusters. Each variant exhibits unique 
diffusive characteristics. 
Source: Adapted from Uberuaga et al, 2006 

The case shown in Figure 5.5. demonstrates the complexity associated with even this 
simple oxide. Here, the landscape of two versions of a five-interstitial cluster, Mg2O3 and 
Mg3O2, are shown. Two striking aspects are illustrated. First, for each of these clusters, 
there are at least three structural variants with different relative stabilities. Second, each of 
these variants exhibits its own diffusive behaviour. Given that, during irradiation, these 
clusters form from even higher energy states (dispersed interstitials), they can easily form 
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from the defects produced during irradiation. A simple reaction-diffusion model allowed 
us to determine that these types of clusters would have measurable effects on the nucleation 
and growth rate of interstitial loops within the material. Thus, it would be critical to include 
these in mesoscale models of radiation damage evolution in materials such as MgO. 

5.7.3. Defect interactions with grain boundaries 
The key challenge in advanced nuclear energy concepts – both fission and fusion – is 
developing materials that can withstand the harsh environments, particularly irradiation. 
Proposed design concepts require materials that can sustain damage doses of 200 dpa or 
higher (dpa, or displacements per atom, is a typical measure of damage, and indicates the 
average number of times an atom is displaced from its lattice site during irradiation). Thus, 
it is imperative to design materials that can withstand these doses. One promising avenue 
is to use internal interfaces – phase boundaries and grain boundaries – to promote defect 
recombination and, effectively, self-healing. 

We used MD and TAD to examine the interaction between irradiation-induced defects and 
grain boundaries in Cu (Bai et al., 2010), again chosen as a model system that can be 
effectively modelled on the atomistic scale. We simulated collision cascades near the 
boundaries with MD and the long-time evolution of those defects with TAD. The 
simulations revealed three important phenomena. First, as seen before (Sugio, Shimomura, 
de la Rubia, 1998) during the cascades, the boundaries tend to absorb many more 
interstitials than vacancies, effectively reducing bulk defect recombination. This implies 
that if no subsequent thermally activated processes were active, boundaries would worsen 
radiation tolerance by increasing the defect content compared to a single crystal. Second, 
at moderate temperatures, the interstitials at the boundary could interact with the residual 
vacancies in the bulk over relatively large distances (∼1 nm) with barriers that are very 
small compared to bulk vacancy diffusion. This so-called “interstitial emission” 
mechanism, illustrated in Figure 5.6., leads to enhanced interstitial-vacancy recombination 
compared to what would be expected if the vacancies directly diffused to the boundary. 
Finally, these results indicate that the sink strength of a boundary is not a fixed quantity, 
but depends on the absorbed defect concentration and thus the irradiation conditions and 
the microstructural state of the material (e.g. the density of boundaries). This has clear 
consequences for mesoscale models of nanomaterials under irradiation. 

Figure 5.6. An example of the type of complex processes that can occur near damaged grain 
boundaries. 

 
Note: In this case, the grain boundary had absorbed interstitials during a collision cascade. Those absorbed 
interstitials interact much more strongly with nearby vacancies than did the pristine grain boundary. The 
interstitials effectively “re-emit” from the boundary, annihilating those vacancies, with barriers much smaller 
than the competing process of conventional vacancy diffusion. 
Source: Adapted from Bai et al., 2010  
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5.8. Limitations and ongoing challenges 

While the methods described above have enjoyed considerable success so far, significant 
challenges remain. The foremost issue is that in many systems, these methods fail to 
provide significant acceleration due to the presence of large numbers of states connected 
by low barriers. In essence, the methods described in this chapter achieve time acceleration 
by collapsing the time to the first event down to a time (or a time-equivalent in 
computational work) that is on the order of the vibrational time scale. If low barriers cause 
the time to the first event to be only marginally longer than this vibrational time scale, the 
boost factor will not be much greater than unity, and can even be much less than unity when 
the overhead is taken into account (e.g. in TAD). Some strategies have been put forward to 
mitigate this issue, such as super-state parallel replica dynamics (Perez et al., 2009), state-
bridging hyperdynamics (Miron, Fichthorn, 2004), TAD with synthetic mode (Søren, 
Voter, 2000), TAD with superbasin sampling (Tsalikis et al., 2010a), on-the-fly superbasin 
detection (Tsalikis et al., 2010b), and incorporation of Tabu sampling (El-Mellouhi, 
Mousseau, Lewis, 2008). For the aKMC methods, absorbing Markov-chain (Novotny, 
1995), and related kinetic system acceleration methods can be employed (e.g. 
see Chatterjee and Voter (2010) and references therein). However, we believe more work 
is required before victory can be claimed, as many systems of interest remain out of reach 
with the current methods. For example, an on-the-fly state definition algorithm that 
automatically identifies an exploitably large separation of timescales would tremendously 
extend the reach of parallel replica dynamics. Statistical analysis tools could also be used 
to identify dynamically “irrelevant” states that could be ignored or lumped with others 
without affecting the long-time dynamics. Many of these ideas are now being explored and 
will hopefully lead to more general AMD methods in the next few years. 

The second issue is the overall accuracy of the predictions that come out of these long-time 
methods. We have limited our discussion to methods that give a high-quality description 
of the long-time dynamics of a system, given particular interatomic potential that provides 
the forces guiding the dynamics. The burden for providing results accurate enough that 
these methods can be reliably useful in guiding and interpreting experiment thus falls on 
the quality of this interatomic potential, which unfortunately is often not up to the task. As 
discussed above, we are beginning to see implementations of AMD and aKMC methods 
with electronic structure methods, which can provide much more accurate forces. Further 
development in this area will be valuable. However, this is still extremely expensive with 
present-day computers and methods, and a substantial number of systems we wish to study 
will probably remain out of reach of this kind of direct electronic-structure treatment for 
the foreseeable future. Thus, it remains important to develop advanced interatomic 
potential forms, perhaps coupled tightly with electronic structure methodology to gain 
greater accuracy at reasonable cost. Further, by extending this concept, it should be possible 
to develop methods that also take specific advantage of the characteristics of infrequent-
event systems and the AMD or aKMC method advancing the dynamics. An example of an 
approach in this general class, designed for regular molecular dynamics, is the “learn on 
the fly" method of Csanyi et al. (2004), in which spatially local potentials are repeatedly 
refit, after each set of a few MD steps, to density functional theory results. In the case of 
infrequent-event systems, it should be possible, for example, to take advantage of the long 
residence time in a particular energy basin to fit a highly accurate “basin-specific" 
interatomic potential for each state the system visits. 

The final issue we will note is the trend towards increasingly parallel, and increasingly 
specialised, computer architectures, which offer both new opportunities and new 
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challenges. Machines at the exascale, anticipated to be less than five years away, will 
probably have ~108 processing cores, each running slower than present-day processors to 
keep the total power requirements under control. In addition to the challenge of harnessing 
this many processors effectively without becoming hopelessly communication bound, the 
nonstandard architectures expected for these systems will make programming a non-trivial 
task. We have begun to see this added difficulty in programming cell processors (Germann, 
Kadau, Swaminarayan, 2009) and GPUs (Anderson, Lorenz, Travesset, 2008), for 
example. On the other hand, the payoff can be substantial. Moreover, the increasing ease 
with which specialised processors can be designed and manufactured for specific tasks 
offers the opportunity for co-designed computers and algorithms that achieve an efficiency 
and speed that is not possible on general purpose machines. The Anton (Shaw et al., 2008) 
computer, designed specifically to perform ultra-fast MD simulations for biological 
systems, is an excellent example of this. It is capable of reaching more than a millisecond 
on realistic biomolecules. One could envision a similar project with the aim of ultra-fast 
simulation of materials systems, and additional speed might be gained if the characteristics 
of infrequent-event methods are directly incorporated. 

5.9. Advances from 2013 to 2018 

Since the time this manuscript was written in 2013, there have been a few noteworthy 
advances in the methods, which we very briefly describe in this section. For a review of 
some recent applications, see references: (Zamora et al., 2016a; Perez, Uberuaga, 2015; 
Ervin, Xu, 2018). 

An approximate version of the hyperdynamics method has been developed, designed to 
maintain constant boost for large systems. In standard hyperdynamics, because making the 
system larger means there are more escape pathways, the system is more frequently brought 
near a dividing surface, a condition requiring that the bias potential go to zero, as discussed 
above. Consequently, for any valid form of bias potential, the boost in hyperdynamics 
decays towards unity as the system is made very large. In local hyperdynamics (Kim, Perez, 
Voter, 2015), a bias force is defined locally, rather than globally, to circumvent this 
problem. Although this approach is approximate, it gives strikingly accurate results, and 
opens the door to massively parallel hyperdynamics simulations on systems with millions 
or billions of atoms. 

A version of the TAD method exploiting speculative parallelisation (SpecTAD) has been 
developed (Zamora et al., 2016a). The key concept here is that any time an attempted 
transition to a state j is observed during the high-temperature basin constrained MD in state 
i, a TAD simulation on a separate processor can be initiated in state j, on the chance that 
this transition to state j will be the one that is ultimately accepted. This spawned process is 
continued until/unless it becomes clear that state j is no longer a candidate for the accepted 
transition. SpecTAD can give substantially higher boost factors than TAD alone under the 
right conditions, as can be seen in a study of the radiation-damage-relevant defects in 
MgAl2O4 (Zamora et al., 2016b). 

A spatially parallelised version of ParRep has been developed (Martinez, Uberuaga, Voter, 
2014), using the same sort of sublattice approach mentioned above for spatially parallelised 
TAD (Shim et al., 2007). For a certain range of system sizes and processor counts (e.g. 106 
atoms, 107 processors, total defect event rate 105 s-1), this approach gives a substantially 
greater parallel speedup than is available from either direct ParRep or spatially parallel MD. 
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Additionally, a generalisation of parallel replica dynamics with greater parallel efficiency, 
parallel trajectory splicing (ParSplice), has been developed (Perez, Huang, Voter, 2018). 
In ParSplice, trajectory segments are generated in many states at the same time – any known 
state becomes a candidate for execution of one or more segment-generating processes. 
Building on the quasi-stationary distribution theory discussed in Le Bris et al., (2012), a 
trajectory segment is “spliceable” if it begins by spending at least a correlation time (or 
dephasing time) in one state, and similarly ends with a full correlation time in one (same or 
different) state. Segments are then spliced together end to end – i.e. a segment that ends in 
a particular state can be spliced to another segment that begins in that same state – to obtain 
an MD-accurate overall trajectory. Using information from the observed behaviour of the 
system, one can build a Markovian statistical model for predicting where new trajectory 
segments will be most likely needed as the system evolves. This model improves the 
efficiency of ParSplice, but has no impact on the accuracy. For systems whose kinetics are 
characterised by superbasin trapping, ParSplice can give a substantial speedup compared 
to ParRep (Perez, Huang, Voter, 2018). ParSplice has been effectively applied to systems 
with radiation-induced disorder (Perriot et al., 2017) to fusion materials (Perez et al., 2017), 
and to metallic nanoparticles (Huang et al., 2017). 

Finally, AMD techniques have started to evolve beyond the original goal of generating 
individual state-to-state trajectories towards the efficient generation of higher-scale models 
of long-time evolution. A recent example of such an approach is TAMMBER (temperature-
accelerated Markov models with Bayesian estimation of rates) (Swinburne, Perez, 2018). 
In TAMMBER, the objective is to use parallel-computing resources to most efficiently 
create a Markovian (KMC-like) model of the state-to-state dynamics while precisely 
accounting for the effect of the incompleteness of the model due to the finite amount of 
(A)MD that was used to parameterise it. The computational engine that underpins 
TAMMBER is a combination of ParSplice and TAD: short burst of high-temperature MD 
are carried out in a distribution of states chosen so as to optimally increase the validity time 
of the model at some lower temperature (the amount of time a trajectory is expected to 
evolve through known transitions before, statistically, a transition that is not yet part of the 
model would occur). While the validity time is a global quantity, it can be inferred using 
estimates of the contribution of the yet-unobserved pathways to total state-wise transition 
rates; in TAMMBER, this is carried out using a Bayesian formalism that exploits the 
Poisson statistics of first-escape times. This formalism also allows for the propagation of 
the uncertainties to observables calculated from the model. 

5.10. Conclusion 

Since their introduction 20 years ago, the AMD and aKMC methods have proven useful in 
a variety of situations, including some relevant to nuclear energy materials, where the 
timescales of interest are out of reach of direct molecular dynamics and where the kinetics 
are too rich to be adequately described with a limited list of pre-determined pathways. 
When the activation barriers between the different states are high relative to the thermal 
energy, any of the AMD methods can yield colossal accelerations, providing a view of 
atomistic dynamics over unprecedented timescales. Further, by leveraging the particular 
strength of each of the methods, or by generalising and combining them with other 
techniques, an even wider variety of situations can be efficiently simulated. Nonetheless, 
there also remain a large number of systems where persistent low barriers severely limit 
the available computational boost. In the previous section, we identified this as the greatest 
limitation of the methods and the most important frontier for future development. Two 
additional important areas for development are designing methods to provide fast and 



100 │ NEA/NSC/R(2019)2 
 

STATE-OF-THE-ART REPORT ON MULTI-SCALE MODELLING METHODS 
      

accurate forces to guide the dynamics, perhaps by coupling with electronic structure 
methods and exploiting the properties of the AMD and aKMC methods; and harnessing the 
full power of specialised computer architectures and the upcoming exascale parallelism. 
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6.1. Introduction 

The different kinetic Monte-Carlo methods that are most widely used in the field of nuclear 
materials are described in this chapter. These methods allow for calculations of defect 
evolution in time for time and length scales that can not be reached by atomistic models 
such as molecular dynamics simulations. Therefore, the results of these calculations take 
us closer to the experimental time and length scales. However, they require information 
from other more fundamental models or from experiments. The KMC methods included in 
this paper are classified as: atomistic kinetic Monte Carlo, object kinetic Monte Carlo and 
event kinetic Monte Carlo. In the last section improved models such as parallel algorithms 
are described. 

One of the challenges of multi-scale modelling in nuclear reactor materials is to be able to 
predict microstructure evolution of irradiated materials for times that expand the lifetime 
of the reactor. The intrinsic difficulty in developing these models lies in the fact that time 
scales from picoseconds to years must be studied. The initial damage produced by the 
energetic particles, the so-called cascade damage, lasts only a few tens of picoseconds and 
extends only a few nanometers. However, it must be accurately described since the initial 
distribution of damage is crucial for the later damage evolution. Molecular dynamics (MD) 
simulations with empirical potentials, have been very successful in modelling this initial 
stage of damage production. However, these models can only reach time scales of 
nanoseconds and length scales of nanometers. For a description of these models see 
Chapters 2 to 4 in this issue. 

Kinetic Monte Carlo (KMC) models on the other hand, are able to simulate the evolution 
in time of a set of objects that have associated certain events with known probabilities of 
occurrence. Unlike in MD simulations, the vibrations of each atom around its equilibrium 
position is not modelled, and much longer time scales can be achieved. However, KMC 
requires information of the types of events that can occur as well as the probability for each 
one of these events. This information is obtained in different ways depending on the 
specific KMC approach used. We will describe three different KMC methods: atomistic 
kinetic Monte Carlo (AKMC), object kinetic Monte Carlo (OKMC) and event kinetic 
Monte Carlo (EKMC). Firstly, a general background of these models will be given.   

6.2. Background 

KMC methods follow the kinetics of slow processes or rare events. Unlike MD simulations 
where time scales of only a few nanoseconds can be achieved since the minimum time step 
is on the order of femtoseconds, in KMC methods time scales of seconds or hours can be 
reached. This allows for direct comparison with experimental measurements, since it is at 
the right time and also length scale. One of the first KMC simulations were performed by 
Beeler (1966), followed by those of Besco (1967) and Doran (1970, 1972) all in the field 
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of radiation effects, since they studied short-term annealing of defects in face centred cubic 
(fcc) and body centred cubic (bcc) materials. Since then, different algorithms based on the 
KMC approach have been developed and applied to many different fields.  

The KMC method is based on knowing the transition rates between events. And these 
transition rates are obtained from energy barriers between two different states of the system. 
For example, the migration of an atom from one lattice position, 1, to a neighbouring vacant 
site, 2, will be driven by an activation energy as shown schematically in Figure 6.1. This 
implies that all the possible barriers for the different transitions of the system to be studied 
must be known. Generally, transition state theory (TST) is used to obtain the rates between 
two different states (Marcelin, 1915). For a detailed and in-depth description of TST and 
KMC see the review by A. Voter (2007). 

Figure 6.1. Schematic diagram of the activation barrier for an atom in position 1 to move to 
a vacant site (position 2) 

 
Source: Caturla et al., 2019 

Once the activation energy is known, the rate for the event, Γe
 , is then obtained considering: 

 Γe=Γe0 exp(− Ea/KT )  (1) 

where Γe0 is the jump or attempt frequency, Ea is the activation energy for that particular 
event, (in the example above, a migration energy), K is Boltzmann's constant and T is the 
temperature.  

Once all the different type of events and event rates are known, the KMC evolves the 
system in time. The residence-time algorithm or Bortz-Kalos-Liebowitz (BKL) algorithm 
(Kalos, 1986) is used both in OKMC and in atomistic or lattice KMC. The algorithm 
proceeds by selecting one event from all possible, with the appropriate weight for each 
event. First, the total rate for all events is calculated as: 

 R=∑ Γe Ne  (2) 

that is the sum over all events of the probability of each event, Γe, times the number of 
objects that can undergo that event, Ne. An event is chosen randomly between 0 and R, 
therefore ensuring that each event is weighted by the appropriate probability of occurrence. 
Figure 6.2. shows a diagram of the total rate and the event picked for a particular simulation 
step.  
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Figure 6.2. Total rate as the sum of individual rates of event up to n events 

 
Source: Caturla et al., 2019 

 

The time of the simulation is then increased by ∆t: 

 Δt= − logξ
R  (3) 

where R is the total rate given by equation (2) and ξ is a random number between 0 and 1, 
that is used to give a Poisson distribution of the time. Once the event has been selected, a 
random particle is chosen from all those that can undergo that event. The particle is then 
moved and the total rate has to be computed again for the next simulation step. 

A different KMC algorithm for advancing the time is used in the so-called EKMC and first 
passage kinetic Monte Carlo (FPKMC) methods, as explained later in this chapter. 
However, both methods use, as in the case of AKMC and OKMC, a set of tabulated rates 
for all possible events in the simulation. 

6.3. Atomistic kinetic Monte Carlo 

In AKMC atoms are fixed in a rigid lattice (Young, Elcock, 1966). Events are usually the 
migration of an atom from a lattice position to a neighbouring position, considering the 
appropriate activation energies for migration. For further details on this method see 
references (Bellon, 2003; Soisson 2006, 2007, 2010). 

This method is used very successfully to study processes such as precipitation or 
segregation in alloys driven by point defects (Soisson, 2006). It is also widely used to study 
thin film deposition and growth (Gilmer et al., 2000; Huang, Gilmer, Diaz de la Rubia, 
1998). AKMC is often also known as lattice kinetic Monte Carlo (LKMC) as in reference 
(Khrushcheva et al., 2003). 

AKMC has a high computational cost, since the jump of every single atom is followed in 
the simulation. That limits the total time that can be reached as well as the system size that 
can be modelled. However, it has other advantages with respect to the OKMC that will be 
described below. 

6.4. Object kinetic Monte Carlo 

OKMC started to be widely used in the field of radiation damage after the work of H. 
Heinisch in the early 90s (1990). Unlike in the case of AKMC, not all atoms are described, 
but only the objects of interest. In the case of radiation, these objects are the defects 
produced during the irradiation, that is vacancies, self-interstitials, impurities and their 
clusters. The events these objects can perform are diffusion events, dissolution from a 
cluster, interaction between different defects or defects with other objects such as grain 
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boundaries or dislocations. The probabilities of these events are given by the migration 
energies and binding energies of the defects. For example, the probability of a defect of 
type i undergoing a migration event is given by: 

 Γm
i =Γ0

i exp(− Em
i / KT)  (4) 

where, as mentioned above, Γi
0 is the jump frequency, Ei

m is the migration energy for that 
particular defect, K is Boltzmann's constant and T is the temperature. When a migration 
event is selected the object is moved a distance δ , the jump distance, which is often selected 
between first and second nearest neighbours. When the object can migrate in any direction 
(three-dimensional migration) the jump is performed by randomly placing the object within 
a sphere of radius δ. When the migration of the object is restricted to one particular direction 
(one-dimensional migration), such as the case of self-interstitial clusters in metals, a 
particular direction of motion (<111> for Fe and <110> for Cu, for example) with respect 
to the simulation box is given to the object when it is created, and the jumps are performed 
only along that direction and with a distance δ.  

The probability of a defect of type i undergoing a dissolution event from a cluster is given 
by: 

 Γd
i =Γ0

i exp(− (Em
i +Eb

i )/KT)  (5) 

where Ei
b is the binding energy of the defect to the cluster. This energy depends on the 

number of defects in the cluster.  

The initial conditions of the simulation are the (x,y,z) co-ordinates of those defects 
produced by the irradiation as well as their type. In case of a continuous irradiation, new 
defects are introduced in the simulation box with a rate according to the dose rate of the 
experiment that is being simulated. The positions and types of defects are obtained from 
molecular dynamics, from binary collision approximation (BCA) calculations, such as 
those obtained from SRIM (SRIM-ref) or Marlow (MARLOW-ref), or as a random 
distribution of Frenkel-pairs, depending on the type of calculation. For example, when 
damage is produced by electrons the last approximation can be used (Fu et al., 2005). In 
the case of damage produced by light ions such as He, calculations using the binary 
collision approximation are appropriate. However, for self-irradiation and heavy-ions it is 
necessary to use those results obtained from MD simulations. Often times a combination 
of BCA and MD calculations is used to obtain the distribution of defects during irradiation 
for energies that can not be reached by MD alone. In this case the BCA is used to obtain 
the energies of those recoils produced by the energetic particle along its path, but the final 
defect distribution produced by those recoils is the one obtained from MD simulations. This 
approximation is based on the existence of a threshold for sub-cascade formation.  

Most of the OKMC calculations for radiation effects in metals describe the objects as points 
in the simulation box with a capture radius that depends on the number of defects of that 
object. This capture radius is normally defined spherical as: 

 
 

(6) 

where n is the number of defects in the cluster and Ω  is the atomic volume. This capture 
radius is used to define when two defects interact. Also when a defect dissolves from a 
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cluster it is positioned outside this capture radius. When using this approach information 
regarding the lattice structure is lost. It is however possible to keep the location of every 
defect during the calculation with the consequent increase in memory for the calculation. 
This is in fact done in models of dopant diffusion in silicon (Johnson, Carturla, Diaz de la 
Rubia, 1998). Strain effects such as the bias interaction between interstitials and 
dislocations can be included in this capture radius, increasing the capture radius for 
interstitials. However, it is also possible to include strain effects in OKMC using elasticity 
theory (Sun et al., 2000; Hudson et al., 2005). Note that in the AKMC method described 
above there is no need to define a capture radius since all atoms, although in a rigid lattice, 
are included in the calculation. 

As mentioned above, the system evolves in this KMC following the residence-time 
algorithm. Examples of applications of this method can be found in (Domain, Becquart, 
Malerba, 2004; Becquart et al., 2010; or Caturla et al., 2000 among many others).  

6.5. Event and first-passage kinetic Monte Carlo 

Another type of algorithm to evolve the time in a kinetic Monte Carlo model is the one 
used by the so-called EKMC and the FPKMC methods. Like in AKMC or OKMC these 
methods require a list of event rates. However, the evolution in time of those events is 
performed differently. In these KMC models the time delay for all the events in the 
simulation is calculated first. And the event with the shortest-time delay is picked first. 
That event is then performed, and all the new time delays have to be calculated again for 
the next simulation step. The time advances by the delay time of the event picked. This 
algorithm is used in codes such as JERK (Lanore, 1974; DallaTorre et al., 2005) and has 
been used very successfully to compute the electrical resistivity of irradiated Fe (Fu 2005) 
and Fe in the presence of impurities such as carbon (Jourdan, Crocombette, 2012). In the 
EKMC method some approximations are made in order to calculate the delay time for 
events such as the interaction between to neighbouring objects. For more details on EKMC 
see references (DallaTorre et al., 2005; Jourdan, Crocombette, 2012; Becquart et al., 2010). 

A general method, without any approximations, was recently developed by Opplestrup et 
al (2006, 2009) named FPKMC. In this method, as in the EKMC algorithm, the event 
selected is the one that would occur in the shortest time from all possible events. However, 
FPKMC lacks the approximations included in EKMC. In FPKMC, each one of the walkers 
is surrounded by a “protective domain” and when a walker is selected it is moved to the 
edge of that domain. That results in a tremendous computational gain with respect to 
OKMC since many small jumps, that would have to be done in OKMC where the jump 
distance is fixed, are automatically avoided in FPKMC. However, the efficiency of 
FPKMC decreases significantly with respect to OKMC when the number of particles is 
high, since for each step, all the times associated to the jump of each walker to the edge of 
their “protective domains” have to be calculated. Some applications and comparisons 
between FPKMC and OKMC can be found in Donev et al. (2010).  

6.6. Other advanced models 

In recent years there has been considerable efforts to improve the KMC. In particular, there 
is an increased interest and need to produce more accurate values for the energy barriers of 
the different states, especially in the case of OKMC. One of the great advancements in this 
area is what is known as on-the-fly KMC. The basic idea of this method is to compute the 
rates of the specific processes at the same time as the kinetic algorithm is evolving. That is, 
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the event rates are not tabulated before the KMC calculation starts. This is particularly 
important for those systems where the type of events possible are very large and it is not 
possible, a priori, to know or define every possible scenario. This is, for example, the case 
of defect diffusion in alloys, in particular, in concentrated alloys, where the rate of a 
particular reaction (a vacancy jump) will depend on the local environment.  

The methodologies used to implement an on-the-fly KMC algorithm differs between 
different groups and is adapted to the type of problem that needs to be solved. Probably the 
first on-the-fly KMC model is the one by Henkelman and Jónsson (2001). The authors use 
the dimer method (Helkelman, Jónsson, 1999) to obtain the saddle points between different 
states and construct an event catalogue. Stress-assisted diffusion of hydrogen in iron has 
been studied (Ramasubramanian et al., 2008) combining on-the-fly calculations of barriers 
using empirical potentials with pre-calculated barriers with more accurate density 
functional theory. For other examples of on-the-fly KMC see reference (Blackwell et al., 
2013; Robinson et al., 2012; Vernon et al., 2011; El-Mellouhi, Mousseau, 2008). 

A new method named self-evolving atomistic kinetic Monte Carlo (SEAKMC) also uses 
an on-the-fly determination of reaction saddle points and energy barriers in a KMC model 
(Xu, Osetsky, Stoller, 2011). Longer simulation times can be reached in SEAKMC because 
it focuses the defect analysis on defined “active volumes” which are regions that encompass 
the defects of interest. The atomistic fidelity of SEAKMC to the underlying physics has 
been demonstrated in direct comparisons with MD simulations and the ability of SEAKMC 
to reach long times has identified new phenomena (Xu, Osetsky, Stoller, 2012; Xu, 
Osetsky, Stoller, Terentyev, 2013). In addition, when the systems to be studied are very 
complex, such as in defect evolution in concentrated alloys, special methods have been 
developed to produce the catalogue of transition rates in a more efficient way. One such 
method consists of using artificial neural networks to predict the values of the energy 
barriers (Castin, Malerba, 2010).  

The application of KMC simulations in more and more complex systems also requires 
efficient methods of solving the KMC algorithm. Nowadays, with the existence of 
supercomputers, parallelisation would seem an obvious way to boost the time in these 
calculations. Parallelisation is relatively simple in an EKMC or FPKMC algorithm. 
However, this is not the case in OKMC. In the OKMC algorithm described above the total 
rate for all events, R, must be computed at each time step. And in order to compute this rate 
all the events must be known. This would mean that all nodes should know of all events at 
every time step, therefore making the parallelisation very inefficient. Recently, Martinez et 
al. (Martinez, 2011) have developed a synchronous parallel algorithm that, unlike previous 
attempts, solves the same master equation as the serial algorithm. In this case, the total rate 
of all events on each processor is kept fixed for all processors by including null events. 
SEAKMC has been parallelised using a hybrid OpenMP and MPI scheme. 

6.7. Conclusions 

KMC algorithms are useful simulation tools to follow the evolution in time of a set of 
events of known probability of occurrence. They can reach time and length scales that allow 
for direct comparison to experiments, and therefore, for validation of the models. In fact, 
KMC can be used for validation of other, more fundamental results, such as DFT 
calculations of migration energies and binding energies of defects (see for example Fu et 
al., 2005).  
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One of the major disadvantages of KMC is the need to know all possible events for a 
particular system, as well as all rates associated to those events. This can only be achieved 
in simple systems. However, the systems of interest for nuclear applications are never 
simple, they are often multicomponent alloys with almost unavoidable impurities. 
Fortunately, an increasing number of groups are developing new methodologies to tackle 
these problems such as on-the-fly KMC algorithms, where the rates are not catalogued but 
computed on-the-fly by different methods, including predictive models such as those based 
on artificial neural networks.  

Besides the effort to increase the accuracy of the KMC method for a particular problem, 
there are also significant advances in terms of speeding up the KMC algorithm itself 
without using approximations. Such is the case of FPKMC, which can be extremely 
efficient for low radiation doses (low defect concentrations) or parallel OKMC.  

In the view of this author, the development of KMC methods for radiation damage 
applications will come from different fronts. On-the-fly methods are very recent and 
promising developments, provided they can be implemented in an efficient manner to reach 
reasonable time and length scales. On the other hand, one important effect that is lacking 
in KMC calculations for radiation damage applications is an efficient way of computing 
defect diffusion including elastic interactions. These interactions are extremely important 
to understand, for example, loop interactions in metals or dislocation-defect interactions, 
particularly under strain. This requires a combination of KMC and dislocation dynamics 
calculations. Some examples already exist in the literature including one single dislocation 
(Wen, Takahashi, Ghoniem, 2009) but further developments are needed. 

Besides the development of methods and algorithms, having more groups in the radiation 
field using KMC models for real applications would also help improve the field. Even 
though the KMC algorithm is fairly simple to implement, developing an efficient code, 
capable of modelling many different conditions and many different species, is not straight 
forward. However, unlike for other simulation methods such as MD, there are few KMC 
programmes available to researchers, at least in the case of radiation damage. An effort in 
this respect is being done at the IMDEA Materials Institute in Madrid (Martín-Bragado et 
al., 2013) for AKMC and OKMC. Further developments along this line for other KMC 
algorithms such as FPKMC or parallel OKMC would also be desirable. On the other hand, 
as mentioned above, standard KMC simulations rely on a set of parameters as input data. 
Researchers could also benefit from a well-structured data base of parameters properly 
documented. Such a project is also currently taking place at CETA-Ciemat3. Finally, one 
would expect that, in the spirit of the multi-scale modelling methodology often used in 
simulations of radiation damage, the combination of all these algorithms (AKMC, on-the-
fly KMC, FPKMC and OKMC), together with cluster dynamics, could reach the time and 
length scales needed to accurately predict the effects of radiation. 
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7.1. Introduction 

Dislocation dynamics (DD) is a methodology that, in terms of length and time scales, sits 
in between atomistics and continuum plasticity. It is powerful for problems in which there 
are too many dislocations to be treated by molecular dynamics (MD), but too few 
dislocations for continuum plasticity to be applicable. DD applies to both face centred cubic 
(fcc) and body centred cubic (bcc) materials, by the application of appropriate slip systems 
and constitutive rules. 

As illustrated in Figure 7.1., DD requires input from MD or kinetic Monte Carlo (KMC) 
etc. in terms of material parameters to describe dislocation evolution and microstructural 
information, such as grainsize and defect density. Using this, it predicts quantities such as 
critical resolved shear stress or hardening rate, which may serve as input for a continuum 
plasticity description, or entire stress-strain curves. Also, it potentially may serve as a 
routine to describe plastic deformation during other phenomena, such as crack growth or 
fatigue. 

Figure 7.1. Illustration of the position of DD in multi-scale modelling 

 
Source: Topuz et al., 2019 

This review will start with a brief review of the underlying assumptions of DD, the 
theoretical models used in setting up the framework and its numerical most popular 
implementation. Subsequently, we will describe how the method has been applied in the 
last two decades to study the influence of irradiation-induced defects on plasticity. For this, 
we will first consider unit events, with individual dislocations interacting with individual 
defects, and then present the predictions of plastic deformation as the result of the collective 
behaviour of multiple dislocations. 
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7.2. Dislocation dynamics: Methodology 

7.2.1. Continuum description of dislocations 
While dislocations are line defects in the atomic lattice, at the lengthscale of DD the atoms 
are averaged out to an elastic continuum and the dislocations are retained as discrete 
entities. A dislocation loop on a crystallographic plane is characterised by the tangent 
vector  as a function of the local co-ordinate s along the loop, and the Burgers vector 
of the displacement discontinuity across the plane, , inside the loop, see Figure 7.2.a. 

Figure 7.2. Geometry of a single dislocation (a) and top view on a slip plane (b) showing two 
discretisation schemes of a dislocation: edge-screw (top right) and nodal (bottom left) 

Source: Topuz et al., 2019 

In DD, the state of stress and strain associated with each dislocation is a continuum 
elasticity problem. Most DD models adopt linear elasticity, in which case the dislocation 
line itself becomes a singularity. Closed-form analytical solutions currently exist only for 
special cases. For straight dislocations (or dislocation segments) the ones in an infinitely 
large, isotropic elastic medium are best known (see, e.g. Hirth, and Lothe (1973)). 
Comparison with atomistic simulations has shown that the continuum solutions are 
accurate at distances of 5~6 times the magnitude of the Burgers vector, b, away from the 
core of the dislocation. These elastic fields incorporate the long-range interaction between 
dislocations but generally do not account for finite dimensions of the crystal. The 
incorporation of traction-free boundary conditions is classically done by means of image 
dislocations, but since 1995 a versatile method for general boundary-value problems is 
available that exploits superposition in linear elasticity (Van der Giessen, Needleman, 
1995; Weygand et al., 2002). 

7.2.2. Constitutive rules 
Effects that occur on atomic length scales are not incorporated in the elastic stress fields 
and need to be formulated in the form of constitutive rules. Such short-range effects include 
the friction stress; dislocation mobility; annihilation of dislocation segments of opposite 
character; the interaction of a dislocation with an obstacle or with a grain boundary; the 
nucleation of a dislocation (or its multiplication in two dimensions (2D)), etc. All of these 
are essentially governed by the Peack-Koehler force. Line tension can be incorporated 
either directly through the lengthening of a dislocation or through its local curvature. Cross-
slip of screw dislocations is generally treated within the framework of the Friedel-Escaig 
model. Constitutive rules tend to be relatively simple and involve material parameters 
whose value is obtained from smaller-scale computations, typically MD simulations, or 
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from experiments. The difference between implementations for fcc versus bcc crystals is 
the number of slip systems and the appropriate constitutive rules. 

7.2.3. Numerical issues 
A DD simulation involves an incremental time-marching algorithm comprising two 
elementary steps: (1) update the dislocation structure, (2) determine the interactive forces 
in the updated situation. Changes in the dislocation structure are governed by the Peach-
Koehler force along the dislocation line, which is a configurational force. It is computed 
from the stress field of all dislocations, the image (or applied) stress and line tension. 
Neglecting the mass attributed to a dislocation line, the dislocation structure is generally 
evolved in a quasi-static way. 

Three classes of analyses can be identified: (a) real three-dimensional (3D); (b) projected 
2D; (c) cross-sectional 2D. In (c), dislocations are assumed to be straight, infinitely long 
edge dislocations (with ) or screw dislocations (with ), so that the problem is truly 
2D. In both (a) and (b), dislocations are considered to be loops on a plane, but in (b) only a 
single slip plane is being considered. In either case, dislocations are discretised (see Figure 
7.2.b.): either as a string of curved (parametric representation) or straight segments (nodal 
representation), or in terms of segments that are either edge or screw. In practice, adaptive 
re-meshing of the loop is used in order to capture large changes in curvature. 

7.2.4. Input for dislocation dynamics for irradiation-induced defects 
Theoretical or computational approach begins with ab-initio electronic structure 
calculations which determine basic defect properties such as formation, binding and 
migration energies of point defects or small defect clusters. In the next stage, MD can 
describe especially primary damage production. Also, the properties of larger defects like 
voids and nanoscopic particles are acquired from MD simulations. However, defect and 
solute diffusion as well as clustering require larger periods (seconds) and distances 
(micrometrers) with respect to MD. Hence, the information obtained from ab-initio and 
MD is introduced to KMC as input data. KMC plays an important role in informing DD 
about the 3D spatial distribution, the number and the size of dislocation loops and defects 
(Wirth et al., 2004). Besides these computational strategies, experimental approaches like 
transmission electron microscopy (TEM) can be used in order to get spatial distributions, 
volume fraction, average diameter, and density of defects (Bako et al., 2007). 

7.3. Interaction between dislocations and defects 

Metals inevitably contain defects as a consequence of production. The defects induced by 
irradiation as they emerge at the sizescale of individual dislocations, depend on many 
processing conditions but also on crystallography. In fcc materials, stacking fault tetrahedra 
(SFT) are a predominant form of damage in low stacking fault energy (SFE) materials like 
Cu, while in high SFE fcc materials interstitials give rise to Frank sessile loops (Osetsky et 
al., 2006). Frank loops serve as hardening particles in bcc crystals as well, but in these 
materials irradiation also gives rise to voids. In this section, we summarise the state of the 
art in the DD modelling of the interaction between a single dislocation and these defects.  
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Figure 7.3. Dissociated dislocation with stacking fault (grey area) under an applied shear 
stress in the vertical direction interacting with small precipipates in Cu, according to 

projected 2D DD simulations 

 
Source: Adapted from Hardikar et al., 2001  

The modelling of SFT’s requires a representation of partial dislocations, characterised by 
the stacking fault energy γ. This energy level scales inversely with the separation distance 
between adjoining Shockley partials. Hardikar et al. (2001) proposed a simple scheme by 
representing two partial dislocations as individual dislocations that apart from long-range 
elastic energy interact with each other via the energy cost corresponding to the stacking 
fault they bound. They determined the value of γ by fitting the separation distance to the 
value predicted by molecular statics (through the quasicontinuum method). An example of 
the profile of the dislocation, showing leading and trailing edges, is shown in Figure 7.3. 

Figure 7.4. Pathway of formation of an SFT from a triangular Frank loop (solid line) 
through dissociation into a Shockley partial (dashed) and a stair-rod dislocation (dotted) 

 
Source: Martinez et al., 2008 
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A more generic approach was introduced recently by Martinez et al. (2008) in which 
segments of a dissociated dislocation are characteried explicitly by the quantity , in 
addition to  and . Here,  is the unit normal to the slip plane with opposite directions 
for the two partials. This allows for a seamless unified treatment of partials and full 
dislocations (for which ) as well as Frank loops (a partial edge dislocation with  
not contained in the slip plane). Traditionally, Frank’s energy criterion is used to govern 
the dissociation of dislocations, but within the framework of DD these authors have shown 
that it is more convenient to adopt a power dissipation criterion. Using their methodology, 
Martinez et al. (2008) elucidated how the stacking fault contained in the Frank loop is 
unfaulted in a way that naturally leads to a SFT, as shown Figure 7.4. The method is likely 
to be amenable to study the interaction between a dislocation and an SFT, as done by means 
of MD by Wirth et al. (2001), but has not been performed to the best of our knowledge. 

Interstitials or vacancies are the results of fast neutron irradiation; as individual atomic 
defects they are in the realm of MD or KMC, but once they cluster and collapse they can 
be regarded as sessile prismatic dislocation loops. The stress field of a planar prismatic loop 
is given in closed-form in (Khraishi et al., 2001) or in more general 3D configurations can 
be computed in much the same way as for glide dislocations, as demonstrated, for example, 
by Novokshanov and Roberts (2009). Figure 7.5. shows snapshots of a DD simulation of 
the passage of a mobile dislocation over an 80nm prismatic loop, which can cross-slip as 
well as glide. Depending on the height at which the mobile dislocation enters, two 
interaction mechanisms were obtained leading to different strengths and a different 
character of the retained prismatic loop. These simulations have also shown that randomly 
distributed loops are weaker ‘obstacles’ than loops that are decorating dislocations and 
thereby locking them. 

Figure 7.5. Interaction between a mobile edge dislocation and an inclined interstitial 
prismatic loop 

 
Source: Novokshanov and Roberts, 2009  

The interaction between a moving dislocation and a dispersoid or another reinforcing 
particle can be described by DD provided it is sufficiently large. Various ways to describe 
the direct interaction between the dislocation and the particle can be found in the literature. 
A rather sophisticated method is to add an explicit repulsive force field between particle 
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and dislocation, as proposed by Bako et al. (2007), which will pin the dislocation against 
the particle. This applies to incoherent and unshearable particles. For such particles, a 
simpler approach, which is particularly popular in 2D projected simulations, is to represent 
the particle geometrically as an impenetrable boundary. In this approach, as a dislocation 
folds around the particle, it is easily seen that the line tension is the most dominant 
contribution to the force on the particle, see Figure 7.6. Introduction of a maximum value 
of this force is, in effect, an extra rule which allows to model shearable particles. 

Figure 7.6. Simple geometrical interaction between a dislocation and a particle 

 
Source: Adjanor et al., 2010  

Voids are shearable particles in ultimate form. While it can be justified to neglect the 
mismatch in elastic properties between the crystal and reinforcing particles, the treatment 
of voids requires proper account of the traction-free conditions on the void surface. Hafez 
Haghigat et al. (2009) have done so by making use of superposition in conjunction with a 
finite element method. Confrontation of the stress field around a 2nm void as induced by 
an edge dislocation at some distance away from it with MD simulations confirmed that this 
effect can indeed be captured by elasticity, see Figure 7.7. The internal free surface of the 
void attracts the dislocation, both as it moves towards the void and when it needs to break 
away from it. It is this interaction that gives rise to the void effectively acting as a particle, 
with a strength that depends on the lattitude of the slip plane (Hafez Haghighat et al., 2009). 

Figure 7.7. Stress field around a void induced by an edge dislocation according to DD 

 
Source: Hafez Haghiaghat et al., 2009 
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7.4. Collective behaviour: What can dislocation dynamics predict? 

The emergent phenomenon caused by the collective behaviour of moving dislocations is 
plasticity. DD is geared to predicting plasticity on the basis of knowledge regarding the 
interaction with individual defects and other microstructural features such as precipitates, 
grain boundaries, twins and laths. There is a large body of literature on DD plasticity, 
mostly dedicated to stress-strain behaviour, including characteristics like yield strength and 
hardening rate, but with limited yet increasing attention for the role of plasticity in 
embrittlement. For space reasons, in the following we concentrate entirely on ways in 
which irradiation-induced defects have been represented in such studies and some salient 
findings. 

7.4.1. 3D simulations 
Fully 3D computations require a large amount of input data, including the position of initial 
dislocations and defects as well as their size and shape. For this reason (probably), most 
studies so far have focused on the effect of a single type of defect at a time.   

A very detailed study has been performed by Bako et al. (2007) in which the distribution 
of dispersoids in an Fe alloy were obtained from TEM images. The critical resolved shear 
stress (CRSS) was computed as the applied stress at which a screw dislocation propagated 
through the obstacle field (see Figure 7.8. just before the critical stage). The dislocation 
was discretised using the nodal method, the dispersoids were assumed to be spherical and 
the interaction with the dislocation treated as mentioned in the previous section. Hundred 
different realisations of dispersoid distributions were analysed in order to get statistics on 
the predicted CRSS, which translates into the initial yield strength via the Schmid factor. 

Figure 7.8. Snapshot of a screw dislocation moving through a 3D distribution of dispersoids, 
occasionaly leaving behind small Orowan loops 

 
Source: Bako et al., 2007 

In a similar spirit, Shin et al. (2009) performed simulations to study the increase of the yield 
strength of an fcc crystal due to spatial distribution of Frank loops. However, a simplified 
interaction rule was used: each loop was treated as an obstacle with a barrier strength 
proportional to the loop radius and independent of the impact location (that is, in contrast 
with Figure 7.6.). As the final step of a multi-scale analysis, Diaz de la Rubia et al. (2000) 
reported a similar DD simulation but now including both Frank loops and SFT’s. These 
computations were the first to explain the development of dislocation-free channels. In the 
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studies mentioned above the various defects were incorporated each by their own 
representation. Robertson and Gururaj (2011) recently proposed a method in which both 
hard precipitates and sessile loops were treated by approximating their shapes with facets, 
see Figure 7.9. 

In so far as DD studies go beyond the initial yield stress and predict stress-strain curves it 
is important to note that in most cases (and certainly the ones cited here) the computations 
are load controlled. This means that a uniform macroscopic stress is increased 
incrementally and that strain at each instant is computed. Sometimes only plastic strain is 
computed from the area swept by the mobile dislocations (e.g. Robertson and Gururaj 
(2011)), sometimes the elastic part of the strain is added by application of Hooke’s law 
(e.g. Kraishi et al. (2001)). This kind of computation is notably different, though, from a 
displacement or strain driven tensile test which gives rise to stress drops rather than strain 
jumps. Simulation of a displacement driven test requires the solution of a boundary-value 
problem (e.g. Weygand et al. (2001)). 

Figure 7.9. (a) Simulation model for the effect of particles and sessile dislocation loops on 
plastic deformation in ferritic grains, by means of (b) a unified facet representation of hard 

particles or sessile loops 

 
Source: Robertson and Gururaj, 2011 

7.4.2. 2D simulations 
The 3D computations mentioned above are able to capture many of the details of the 
interactions between dislocations and (irradiation-induced) defects, but they are limited by 
the number of dislocations that can be handled. Many more dislocations and larger strains 
can be achieved with 2D simulations where all dislocations are either pure edge or pure 
screw, since dislocation lines reduce to points, but, obviously, the detailed interactions are 
lost. In fact, 2D obstacles are imaginary entities that, somehow, are to represent the (spatial) 
distribution of real defects and their variation in strength. Likewise, a 2D nucleation site is 
the projection of a pinned segment that serves as a Frank-Read source. Nevertheless, with 
appropriately tuned rules, it has been possible, for example, to accurately capture the size 
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dependence of the stress-strain response of thin polycrystalline films (Shishvan and Van 
der Giessen (2010)). In this cited paper, the source parameters were fit from experiments 
but, in principle, it should be possible to extract them from 3D (or projected 3D) 
computations (in the spirit of the suggestion made by Hardikar et al. (2001)). To the best 
of the authors’ knowledge this latter approach has not yet been applied to study the 
influence of irradiation-induced defects. 

Durgaprasad et al. (2011) have presented an experimentally-based implementation of 2D 
DD simulations for irradiated materials (see Figure 7.10.). All defects were represented by 
point obstacles whose (“locking”) strength is assumed to obey a Gaussian distribution. The 
value of the average strength was related by these authors to the radiation fluence via the 
confrontation of single-crystal simulations with experimental yield strength values. For 
simplicity, only single slip was considered and shear loading was strain controlled. The 
grain boundaries in this work are assumed to be impenetrable and because of this 
interaction give rise to a significant Hall-Petch effect. 

Figure 7.10. Shear-induced distribution of edge dislocations in a 2D polycrystalline material 
containing randomly distributed obstacles with a normal distribution of strengths to 

represent irradiation-induced defects 

 
Source: Durgaprasad et al., 2011 

7.5. Limitations, needs and challenges 

Just like any computational model, DD has restrictions; some of these are inherent, and 
define the range of applicability of the model, others are limitations that are of more 
practical nature and may be overcome in future implementations. We close the exposition 
with improvements and extensions that are needed, especially for nuclear materials. 

7.5.1. Inherent limitations 
• DD only applies to phenomena occurring on length scales . Below this, the 

dislocation core becomes important, and this cannot be captured by linear elasticity. 

• The quality of the predictions is controlled by the extent to which physical 
mechanisms are represtented by constitutive rules and by their accuracy. In 
particular, the modelling of cross-slip and climb is not as robust as the desciption 
of dislocation glide. 
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• The glide velocity of a dislocation needs to be smaller than the shear wave speed, 
since the stress fields adopted for individual dislocations are for quasi-static 
dislocations. 

7.5.2. Practical limitations (at this moment) 
• The fields for individual dislocations and dislocation segments are well known in 

terms of isotropic elasticity. In truly 2D computations the fields based on cubic 
isotropy are also known, yet somewhat more cumbersome. Elastically anisotropic 
fields in 3D, however, are only known formally in integral form, which makes them 
useless. 

• The computing time increases rapidly with number of dislocations because their 

long-range interactions involves an  problem. Fast multipole methods have 
been developed to remedy this, but the break-even point lies at rather large numbers 
of dislocation segments. 

• The necessary information content about the initial microstructure, including 
defects and the distribution of their properties, is very large and, in most cases, 
unknown. It is common to generate random microstructures based on known global 
measures such as densities, but these microstructures may not be realistic or even 
attainable in practice. An alternative approach therefore is to perform DD 
simulations of a preceding deformation process in order to obtain, for example, 
more realistic dislocation structures that serves as initial microstructure for the 
desired computation. At any rate, multiple realisations need to be analysed in order 
to obtain statistically meaningful results. 

• The accuracy with which boundary conditions can be incorporated in 3D is quite 
limited. Superposition methods with a finite element solution are versatile but rely 
quite sensitively on the mesh size, especially where dislocations intersect 
boundaries (cf. Weygand et al. (2001)). The treatment of free surfaces recently 
proposed by Tang et al. (2006) is accurate, but restricted to traction-free boundary 
conditions. 

7.5.3. Needs 
• Interfaces are known to have a significant effect on dislocation plasticity. Grain 

boundaries, for instance, can contribute significantly to hardening (leading to the 
well-known Hall-Petch grain size effect). Till this date, DD studies of the effect of 
radiation on yield and hardening have been carried out (almost) exclusively on 
single crystals, which, at least, raises questions about the relative contribution of 
irradiation-induced damage. It has been demonstrated in purely 2D studies that 
grain boundary effects can be incorporated to a first approximation in DD by 
assuming the boundaries to be impenetrable (e.g. Balint et al. (2008), Shishvan, 
Van der Giessen (2010), Durgaprasad et al. (2011)) and refined grain boundary 
models are under construction. This work should be extended to 3D. 

• The interaction between dislocations and defects has been modelled at varying 
levels of sophistication, but have all ignored the elastic mismatch between the metal 
crystal and, for instance, particles. The influence of this mismatch may be small but 
this can only be established once a method is available to incorporate it.  
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• As a further improvement of the previous item, there is a need for methods to study 
the propagation of a dislocation through a shearable particle, as a function of its 
strength, size and shape.  

• All DD studies referenced in the above have assumed that new dislocations are 
generated by multiplication through the Frank-Read process. Although relevant, 
especially for single crystals, this ignores the possibility of nucleation of 
dislocations from (free) surfaces and interfaces. The need for models of dislocation 
nucleation is quite generic, and not less so in order to capture the possible 
enhancement of nucleation from defects such as voids, grain boundaries and other 
interfaces as well as He bubbles.  

• By the very nature of DD, thermal effects cannot be represented directly but have 
to be captured in constitutive rules. For some processes, like cross-slip, this has 
been done by means of a probabilistic approach. However, while it is known that 
thermal activation is key in the evolution of microstructures, to the best of the 
authors’ knowledge this has not been incorporated yet in any DD model. As 
dislocation crossing of obstacles is a dominant phenomenon in irradiated materials, 
the incorporation of thermal acitivation seems to be of high priority. 

• To this date, DD studies have focused almost exclusively on the effect of irradiation 
damage on plastic deformation, viz. yield and hardening, while the effects on 
fracture properties are likely to be of equal importance from a nuclear engineering 
point of view. Hence, irradiation embrittlement is still a relatively unexplored area. 
Plastic properties, of course, play an important role in fracture, but there is no 
simple one-to-one mapping. Especially in many popular nuclear materials which 
possess rather limited plasticity, fracture is phenomenon that necessitates a multi-
scale approach (cf., e.g. Odette et al. (2003)). While the interaction between a 
dislocation and a stationary crack has been investigated to quite some detail, there 
have been only a handful of DD-based simulation studies of crack growth. The 
recent work by Noronha and Ghoniem (2007) is the first attempt to study the effect 
of irradiation on the ductile-to-brittle transition temperature, but by using a very 
simplified model. There is a lot of room for improvement here. 

References  

Adjanor, G. et al. (2010), “Overview of the RPV-2 and INTERN-1 packages: From primary damage to 
microplasticity”, J. Nucl. Mater. Vol. 406, pp. 175–186. 

Bako, B. et al. (2007), “Discrete dislocation dynamics simulations of dislocation interactions with Y2O3 
particles in PM2000 single crystals”, Phil. Mag, Vol. 81, pp. 3 645–3 656. 

Balint, D. et al. (2008), “Discrete dislocation plasticity analysis of the Hall-Petch effect”, Int. J. Plasticity, 
Vol. 24, pp. 2 149–2 172. 

Diaz de la Rubia, T. et al. (2000), “Multiscale modelling of plastic flow localization in irradiated 
materials”, Nature, Vol. 406, pp. 871–874. 

Durgaprasad, P.V. et al. (2011), “Application of dislocation dynamics to assess irradiation effect on 
materials with different grain sizes”, Nucl. Engrg. Design, Vol. 241, pp. 603–607. 

Hafez Haghighat, S.M. et al. (2009), “Dislocation–void interaction in Fe: A comparison between molecular 
dynamics and dislocation dynamics. J. Nucl. Mater., Vol. 386–388, pp. 102–105. 



NEA/NSC/R(2019)2 │ 127 
 

STATE-OF-THE-ART REPORT ON MULTI-SCALE MODELLING METHODS 
 

Hardikar, K., V. B. Shenoy and R. Phillips (2001), “Reconciliation of atomic-level and continuum notions 
concerning the interaction of dislocations and obstacles”, J. Mech. Phys. Solids, Vol. 49, pp. 1951–
1967. 

Hirth, J.P. and J. Lothe (1968) Theory of Dislocations, McGraw-Hill, New York. 

Khraishi, T.A. et al. (2001), “Modelling of irradiation-induced hardening in metals using dislocation 
dynamics”, Phil. Mag. Lett., Vol. 81, pp. 583–593. 

Martinez, E. et al. (2008), “Atomistically informed dislocation dynamics in fcc crystals”, J. Mech. Phys. 
Solids, Vol. 56, pp. 869–895. 

Noronha, S.J. and N. M. Ghoniem (2007), “Brittle–ductile transition in F82H and effects of irradiation”, 
J. Nucl. Mater., Vol. 367–370, pp. 610–615. 

Novokshanov, R. and S. Roberts (2009), “3D Dislocation dynamics modelling of interactions between 
prismatic loops and mobile dislocations in pure iron”, J. Nucl. Mater. Vol. 386–388, pp. 64–66. 

Odette, G.R. et al. (2003) “Cleavage fracture and irradiation embrittlement of fusion reactor alloys: 
mechanisms, multiscale models, toughness measurements and implications to structural integrity 
assessment” J. Nucl. Mater., Vol. 323, pp. 313–340. 

Osetsky, Y.N., D. Rodney, and D.J. Bacon (2006), “Atomic-scale study of dislocation–stacking fault 
tetrahedron interactions. Part I: mechanisms”, Phil. Mag., Vol. 86, pp. 2 295–2 313. 

Robertson, C. and K. Gururaj (2011), “Plastic deformation of ferritic grains in presence of ODS particles 
and irradiation-induced defect clusters: A 3D dislocation dynamics simulation study”, J. Nucl. Mater., 
Vol. 415, pp. 167–178. 

Shin, C., J. Kwon, and W. Kim (2009), “Prediction of radiation-induced yield stress increment in austenitic 
stainless steels by using a computational approach”, J. Nucl. Mater., Vol. 386–388, pp. 610–612. 

Shishvan, S.S. and E. Van der Giessen (2010), “Distribution of dislocation source length and the size 
dependent yield strength in freestanding thin films”, J. Mech. Phys. Solids, Vol. 58 pp. 678–695. 

Tang, M. et al. (2006), “A hybrid method for computing forces on curved dislocations intersecting free 
surfaces in three-dimensional dislocation dynamics”, Model. Simul. Mat. Sci. Engrg., Vol. 14, pp. 
1 139–1 151. 

Van der Giessen, E. and A. Needleman (1995), “Discrete Dislocation Plasticity: A Simple Planar Model”, 
Model. Simul. Mat. Sci. Engrg., Vol. 3, pp. 689–735. 

Weygand, D. et al. (2002), “A. Aspects of boundary-value problem solutions with three-dimensional 
dislocation dynamics”, Model. Simul. Mat. Sci. Engrg., Vol. 10, pp. 437–468. 

Wirth, B.D. et al. (2001), “Mechanical property degredation in irradiated materials: A multiscale modelling 
approach”, Nuclear Instruments and Methods in Physics Research B, Vol. 180, pp. 23–31. 

Wirth, B.D. et al. (2004), “Multiscale modeling of radiation damage in Fe-based alloys in the fusion 
environment”, J. Nucl. Mater., Vol. 329-333, pp. 103–111. 

Zinkle, S.J. (2005), “Fusion Material Science: Overview of challenges and recent progress”, Physics of 
Plasmas, Vol. 12, 058101.  



128 │ NEA/NSC/R(2019)2 
 

STATE-OF-THE-ART REPORT ON MULTI-SCALE MODELLING METHODS 
      

8.  Introduction to the phase-field modelling technique: A primer on the 
Allen-Cahn and Cahn-Hilliard models 

M. J. Welland 
Computational Techniques, Canadian Nuclear Laboratory, Canada 

8.1. Introduction 

Phase-field models have emerged as a robust modelling approach to understand and predict 
microstructure evolution with complex interface morphology including topology changes 
(Allen, Cahn, 1972; Cahn, Hilliard, 1958; Provatas, Elder, 2010; Steinbach, 2013; Bellon, 
2012; Chen, 2002, Boettinger et al., 2002). Models of this type can quantitatively simulate 
phenomena that involve phase changes and/or interfacial energy such as fracture (Borden 
et al., 2012; Bourdin et al., 2008; O’Connor et al., 2016, Chakraborty et al., 2014), grain 
boundary movement (Kennouche et al., 2016; Zhang et al., 2016; Tonks et al., 2014 ; 
Ahmed et al., 2017), bubble evolution (Chakraborty et al., 2014; Millet et al., 2012; Li et 
al, 2010), melting/solidification (Welland et al., 2009; Böhler et al., 2014), and nano-scale 
phenomena (Welland et al., 2015; Ulvestad et al., 2015), some of which are shown in Figure 
8.1. Models may be derived in a thermodynamically self-consistent fashion, integrated with 
thermodynamic databases, and used to demonstrate kinetic phenomena such as dendritic 
solidification and solute trapping. They are readily coupled with other continuum-scale 
transport equations such as heat and mass transport, elasto-mechanics, surface effects, etc.  

This document is an introduction to the phase-field modelling concept and discussion of 
the canonical Allen-Cahn and Cahn-Hilliard models. The theory refers to both equilibrium 
thermodynamics and transport processes and a basic familiarity of both is assumed. Several 
comprehensive reviews have been written on the current state of phase-field models 
(Provatas, Elder, 2010; Steinbach, 2013; Bellon, 2012; Chen, 2002, Boettinger et al., 2002) 
to which the reader is referred for a more in-depth discussion. Similarly, there are several 
review articles on phase-field modelling of irradiation damage (Devanthan et al., 2010; Li 
et al., 2017; Tonks et al., 2017). 

Phase-field models represent the local phase at a point in space by a field variable which 
varies smoothly and continuously in space between phases, representing a diffuse interface. 
Contrasted to sharp interface models, this approach captures complex interface morphology 
in a robust fashion while naturally including interfacial energy which dominates many 
nano- and microscopic processes (Welland, Lewis, Thompson, 2008). However, this 
robustness has substantial computational expense, requiring small mesh sizes in typical 
numerical solver techniques, as the interface, which is typically very thin, must be 
resolvable in the system.  

Phase-field models are typically derived at the mesoscale which is characterised as the 
intermediate scale between the description of material as discrete components and a 
continuum. This scale is large compared to atomic distances and includes enough discrete 
components to be treated statistically such that thermodynamic properties such as 
temperature, concentration, pressure, and phase are robustly defined (Steinbach, 2013). 
However, the scale is small compared to other characteristic, macroscale properties such 
as the size of the system of interest, and the gradients of such thermodynamic properties. 



NEA/NSC/R(2019)2 │ 129 
 

STATE-OF-THE-ART REPORT ON MULTI-SCALE MODELLING METHODS 
 

Figure 8.1. Example applications of phase-field modelling 

(a): Evolution of intergranular fission gas bubbles in U-Mo for calculation of the effective thermal 
conductivity. (b): Intergranular fracture with the presence of bubbles along the grain boundary. (c): Non-

congruent melting of (U,Pu)O2 fuel in laser flash experiments. (d): Hydrogen accomodation in PdH 
nanocubes compared to experimental results. 

 

 
(a) 

 

 
 

(b) 

 
 

(c) 

 

(d) 
Source: (a) Hu et al., 2015, (b) Chakraborty, Tonks, Pastore, 2014, (c) Böhler et al., 2014, (d) Ulvestad et al., 
2015 

The governing equations for the phase-field models, along with any other coupled physics, 
is derivable through the Theory of Irreversible Processes, also known as Non-equilibrium 
Thermodynamics. Through the governing equations, the system is allowed to evolve so as 
to generate entropy based on the energy of the system as a whole and is represented by a 
system of coupled partial differential equations (PDE). This derivation provides a robust 
mathematical link between equilibrium thermodynamics and the time-dependant evolution 
of the system with multiple coupled phenomena such as heat and mass transport in the 
presence of non-congruent phase change (Welland et al., 2009; de Groot, Mazur, 1984; 
Welland, 2012).  
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Both the Allen-Cahn and Cahn-Hilliard models have non-uniform, diffuse interface 
solutions controlled by two factors which together determine the interfacial energy and 
width. The first factor deals with the local state of the material within the diffuse interface 
which is not in either of the equilibrium phases and therefore has a non-optimal energy. 
The second factor is related to the relative state of the surrounding material and is 
mathematically captured by the inclusion of a gradient energy term in the free energy 
functional of the system, which is sometimes referred to as the Ginzburg-Landau functional 
(Cahn, Hilliard, 1958; Provatas, Elder, 2010). Minimisation of the excess and gradient 
energies leads to shrinking and widening of the diffuse interface respectively resulting in a 
minimal, spatially-dependant profile with a characteristic interface width, and a non-zero 
interfacial energy.  

8.2. The Allen-Cahn model 

The Allen-Cahn equation, also referred to as the non-conserved phase-field model or Model 
A, is useful for representing a first-order phase transformation such as 
melting/solidification and evaporation/condensation (Allan, Cahn, 1972; Provatas, Elder, 
2010; Hohenberg, Halperin, 1977). These transformations feature a discontinuous 
transition in the first derivative of the free energy, e.g. a latent heat of transformation.  

A set of state variables are introduced akin to reaction co-ordinates for the phase transition, 
and are not conserved quantities. Historically, these variables were envisioned as 
representing the ordering / symmetry of the phase. This ordering is schematically depicted 
in Figure 8.2. in which the average atomic density is periodic to the left and becomes 
smooth to the right corresponding to the transition of, e.g. a solid to a liquid. In modern 
applications it is common to treat the phase-field variables as abstract ‘phase indicators’ to 
spatially represent the local phase and disregard potential physical meaning (Steinbach, 
2013). 

Figure 8.2. Schematic representation of a one-dimensional (1D) average atomic density field  

 
Note: The figure illustrates a crystal-like ordering on the left and fluid-like disordering on the right with a 
diffuse interface between them. The phase-field variable 𝜙𝜙 can be envisioned as the amplitude of the oscillation. 
Source: Welland, 2019 
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A fundamental example of the Allen-Cahn model is a two-phase material, which requires 
only a single phase-field variable 𝜙𝜙. The free energy of the system is represented as the 
integral over the system volume, 𝑉𝑉, of the local free energy density and additional terms 
present in the interface,  

 
𝐹𝐹 = � 𝑓𝑓(𝜙𝜙, … )�����

𝑓𝑓𝑟𝑟𝑒𝑒𝑒𝑒 𝑒𝑒𝑛𝑛𝑒𝑒𝑟𝑟𝑖𝑖𝑦𝑦 𝑑𝑑𝑒𝑒𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦
+ 𝑊𝑊𝜙𝜙2[1− 𝜙𝜙]2 +

𝜖𝜖2

2
|∇𝜙𝜙|2�����������������

𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑓𝑓𝑎𝑎𝑐𝑐𝑖𝑖𝑎𝑎𝑙𝑙 𝑡𝑡𝑒𝑒𝑟𝑟𝑚𝑚𝑠𝑠

 𝑑𝑑𝑉𝑉 , (1) 

where 𝑓𝑓(𝜙𝜙, … ) is the phase-dependent free energy density, and the ellipses indicate other 
state variables such as concentration, temperature, etc. The first interfacial term is a double-
well potential which has minima at 𝜙𝜙 = 0,1. The form of this term is not unique and other 
models are in use such as the double-obstacle function (Steinbach, 2013). The interfacial 
terms are controlled by parameters 𝑊𝑊 and 𝜖𝜖 whose product and ratio are related to the 
interfacial energy and width respectively as described below.  

An interpolation function, 𝑒𝑒(𝜙𝜙), which interpolates between single-phase properties, can 
be envisioned as the local volume fraction of a phase. This function also ensures each phase 
is stable with respect to infinitesimal variations in 𝜙𝜙. A simple and commonly used form 
for 𝑒𝑒(𝜙𝜙) is, 

 𝑒𝑒(𝜙𝜙) = 𝜙𝜙3[6𝜙𝜙2 − 15𝜙𝜙 + 10], (2) 

which satisfies 𝑒𝑒(𝜙𝜙 = 0) = 0, 𝑒𝑒(𝜙𝜙 = 1) = 1, and 𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

(𝜙𝜙 = 0) =  𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

(𝜙𝜙 = 1) = 0. The 
free energy density of the multiphase system can then be interpolated between those of the 
two pure phases, 𝑓𝑓𝛼𝛼 and 𝑓𝑓𝛽𝛽 as, 

 𝑓𝑓(𝜙𝜙, … ) = [1 − 𝑒𝑒]𝑓𝑓𝛼𝛼(… ) + 𝑒𝑒𝑓𝑓𝛽𝛽(… ). (3) 

The system may be visualised as in Figure 8.3. where the free energy curves for the 𝛼𝛼 and 
𝛽𝛽 phases are shown as functions of the concentration, 𝑐𝑐. The optimal, equilibrium state is 
the lowest common tangent of the curves which imply the partitioning of species between 
phases to 𝑐𝑐𝛼𝛼 and 𝑐𝑐𝛽𝛽. The phase function 𝑒𝑒 is then the distance along the lowest common 
tangent (tie line). 
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Figure 8.3. Free energy curves for coexisting phases showing the tie line between equilibrium 
concentrations 

 
Source: Welland, 2019 

 

The change in the energy of the system with respect to a change in the phase-field profile 
is given by the functional derivative, 

 𝛿𝛿𝐹𝐹
𝛿𝛿𝜙𝜙

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

+  𝑊𝑊
𝜕𝜕(𝜙𝜙2[1 − 𝜙𝜙]2)

𝜕𝜕𝜙𝜙
− 𝜖𝜖2∇2𝜙𝜙. (4) 

In equilibrium, the variation of 𝐹𝐹 with 𝜙𝜙 must be zero, 𝛿𝛿𝛿𝛿
𝛿𝛿𝑑𝑑

= 0. Furthermore, for a planar 
system in equilibrium with two coexisting phases, the driving force for local phase 
transformation is also zero, 𝜕𝜕𝑓𝑓

𝜕𝜕𝑑𝑑
= 0. The shape of 𝜙𝜙 is then controlled by the interfacial 

terms, 

 
𝑊𝑊
𝜕𝜕(𝜙𝜙2[1− 𝜙𝜙]2)

𝜕𝜕𝜙𝜙
− 𝜖𝜖2∇2𝜙𝜙 = 0, (5) 

which has a solution with the normal co-ordinate 𝑒𝑒, 

 𝜙𝜙(𝑒𝑒) =
1
2

+
1
2

tanh
𝑒𝑒

2𝑑𝑑
, (6) 

Where 

 
𝑑𝑑 = � 𝜖𝜖2

2𝑊𝑊
,  (7)  

and is referred to as the interfacial width. Equation (6) is plotted in Figure 8.4. with the size 
of a factor of 𝑑𝑑 indicated. 
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Figure 8.4. Demonstrative phase-field profiles and excess energy 

Above: equilibrium solution with the interface width shown. Below: Corresponding excess energy which 
integrates to the interfacial energy. 

 
Source: Welland, 2019 

 

Inserting the equilibrium profile in equation (6) into the energy functional in equation (1), 
we can determine the total free energy of the system including the interface. The difference 
between this energy and that of a system without the interfacial terms is identified as the 
interfacial energy, 𝜎𝜎, 

 
𝜎𝜎 =

1
3
�𝜖𝜖

2𝑊𝑊
2

, (8) 

and is shown as the shaded area in Figure 8.4. 

The phase-field parameters in equation (1) are related to the material properties of interface 
width and energy by inverting equations (7) and (8), 

 𝜖𝜖2 = 6𝜎𝜎𝑑𝑑, (9) 

 𝑊𝑊 = 3𝜎𝜎 𝑑𝑑⁄ . (10) 
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Finally, there is also a phase-field parameter related to the kinetics of phase change. Since 
the phase-field variable is non-conserved, it is driven directly from the reduction of free 
energy. The governing equation for this parameter is simply, 

 𝜕𝜕𝜙𝜙
𝜕𝜕𝑑𝑑

= −𝑀𝑀𝑑𝑑
𝛿𝛿𝐹𝐹
𝛿𝛿𝜙𝜙

, (11) 

where 𝑀𝑀𝑑𝑑 is a mobility term which can be related to interface attachment kinetics (Karma, 
1996), and the variational derivative is given in equation (4). 

The Allen-Cahn formula can be generalised to multiphase systems through the introduction 
of additional phase-field variables, 𝜙𝜙1,𝜙𝜙2 … and the modification of the interfacial terms 
in equation (1) to include multi-well potentials and other gradient energy terms ( Nestler, 
Garcke, Stinner, 2005; Zhang, Steinbach, 2012; Welland, Wolf, Guyer, 2014; Choudhury, 
Nestler, 2012). Other thermodynamic variables may be added to this model, such as 
multicomponent diffusion, displacement variables to represented elasticity and plasticity, 
and electromagnetic properties (Zhang, Steinbach, 2012; Welland, Wolf, Guyer, 2014; 
Choudhury, Nestler, 2012). In the case of coupling between phase transitions and another 
state variable such as concentration, it is required that equation 11) be coupled to the 
relevant transport equation; i.e. for a binary system undergoing solidification / melting, the 
Allen-Cahn equation should be coupled to a mass balance equation.  

8.3. The Cahn-Hilliard model 

The Cahn-Hilliard model does not introduce an additional order parameter, but instead 
relies on a free energy potential which is concave in a state variable, commonly 
concentration, along with a gradient energy term for the same variable (Cahn, Hilliard, 
1958). The state variable is usually conserved, and hence this model is also sometimes 
referred to as the conserved phase-field model, or Model B.  

The free energy functional of a canonical Cahn-Hilliard equation is, 

 𝐹𝐹 = �𝑓𝑓(𝑐𝑐, … ) + 𝜅𝜅|∇𝑐𝑐|2 𝑑𝑑𝑉𝑉 , (12) 

where 𝜅𝜅 is the gradient energy coefficient which acts on the concentration field, in contrast 
to the phase-field variable as in the Allen-Cahn equation. The free energy density is 
represented by 𝑓𝑓(𝑐𝑐, … ), an example of which is shown in Figure 8.5. which corresponds to 
a binary, two-phase system with a miscibility gap in the phase diagram between the stable 
bulk phases at concentrations 𝑐𝑐𝛼𝛼 and 𝑐𝑐𝛽𝛽. The equilibrium solution varies continuously 
between 𝑐𝑐𝛼𝛼 and 𝑐𝑐𝛽𝛽 as indicated by the tie line, but in this case the material between the 
equilibrium phases still lies on the free energy curve. Therefore, there is an excess energy 
enclosed between the tie line and the free energy curve which serves the same function as 
the double-well potential in the Allen-Cahn equation. 
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Figure 8.5. Demonstrative free energy profile for a Cahn-Hilliard model. 

 

 
Note: The tie line shows the equilibrium miscibility gap between concentrations 𝑐𝑐𝛼𝛼 and 𝑐𝑐𝛽𝛽. The difference 
between the tie-line and the free energy curve is shown as Δ𝑓𝑓 and penalises material between phases. Also 
labelled are the metastable region in which classical nucleation needs to occur to trigger the phase change, and 
the unstable region wherein infinitesimal fluctuation of composition can trigger spinodal decomposition. 
Source: Welland, 2019 

Since the excess energy described above depends on the free energy profile and is not of a 
standard form, the equilibrium profile across the interface does not in general have an 
analytical solution. Practically however, the double-well potential is a reasonable 
approximation and the concentration profile resembles the hyperbolic tangent solution in 
equation (6).  

It is possible to obtain an estimate of the interfacial width, through consideration of the 
equilibrium solution to equation (12). Since this equation does not depend explicitly on the 
spatial co-ordinate, the equilibrium solution must satisfy the Bertrami Identity and it can 
be shown that, 

 Δ𝑓𝑓 = 𝜅𝜅|∇𝑐𝑐|2, (13) 

for which the integration constant can be eliminated, given that far from the interface both 
Δ𝑓𝑓 and ∇𝑐𝑐 are zero. One can then estimate the interface width as (Cahn, Hilliard, 1958), 

 
d =

𝑐𝑐𝛽𝛽 − 𝑐𝑐𝛼𝛼

max(∇𝑐𝑐) , 

= �𝑐𝑐𝛽𝛽 − 𝑐𝑐𝛼𝛼��
𝜅𝜅

max (Δ𝑓𝑓)
. 

(14) 

The governing equation for the evolution of the phase is simply that of the corresponding 
conserved quantity, in this case the concentration. However, since the free energy of the 
system is now a functional of that quantity, the thermodynamic driving force for mass flux 
must be the functional derivative, 
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μ =

𝛿𝛿𝐹𝐹
𝛿𝛿𝑐𝑐

, 

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑐𝑐

− 2𝜅𝜅∇2𝑐𝑐. 
(15) 

The mass flux is then, 

 𝐽𝐽 = −𝑀𝑀∇𝜇𝜇, (16) 

where the mobility 𝑀𝑀 is related to the diffusivity of the species. The mass balance, which 
includes the movement of the interface, is then, 

 ∂c
∂t

= −∇ ⋅ 𝐽𝐽. (17) 

The Cahn-Hilliard equation is a fourth order PDE, which can be problematic for the Finite 
Element Method numerical solvers. Therefore, it is common to split this equation into two 
second-order PDEs, equations (15) and (7), which is then solved as a coupled system.  

8.4. Phase stability, decomposition and nucleation 

A key difference between the Allen-Cahn and Cahn-Hilliard equations is in phase 
nucleation/decomposition. Mathematically, these processes are related to the stabilities of 
their solutions to infinitesimal fluctuations. Physically, these processes can be triggered by 
thermal fluctuations, radiation or other, typically stochastic processes which can be 
introduced into simulations to some degree.  

Classical nucleation theory requires the embryo of a new phase to be of a sufficient size 
such that the liberation of energy from the transformation exceeds the interfacial energy 
incurred between the original and new phases. Since the embryo is larger than the scale of 
the interface it must be fully resolved within phase-field models. The random fluctuation 
must therefore be of a size comparable to the critical nucleus size. This may be 
implemented through Langevin noise terms in the governing equations, or ad hoc 
placement of nuclei according to some physical observation (Welland et al., 2009; 
Simmons et al., 2004; Jokisaari, Permann, Thornton, 2016).  

This nucleation barrier allows both models to represent non-equilibrium scenarios such as 
undercooling. Although the formation of an embryo poses difficulty in phase-field models, 
the stability of an embryo is well captured and complicating phenomena such as latent heat 
evolution and depletion zones can be simulated once an embryo is introduced (Jokisaari, 
Permann, Thornton, 2016). While the standard Allen-Cahn model always requires an 
embryo of a critical size, this is only true in the Cahn-Hilliard model for the convex regions 
of the free energy density as shown in Figure 8.5.  

For a system with a concentration in the concave region of Figure 8.5., spinodal 
decomposition can occur. The phases decompose spontaneously, splitting the average state 
variables between them which, due to the concavity of the free energy profile, results in a 
lower overall energy. Since the interfacial energy is related to the free energy profile, it 
does not prevent this decomposition. Mathematically, this result follows from Von 
Neumann stability analysis applied to the stationary points of equations (11) and (17) which 
shows that infinitesimal fluctuations, as may occur due to numerical error, are energetically 
favourable and therefore grow without a barrier.  
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8.4.1. Solution of the phase-field equations  
Both the Allen-Cahn and Cahn-Hilliard equations are PDEs and, with the exception of a 
few simple cases, require numerical solutions. This may be accomplished through standard 
real-space numerical methods such as the Finite Element, or Finite Difference methods. 
Such real-space methods are a mature and common approach and offer adaptive mesh 
refinement techniques which are useful for resolving the interface over larger spatial length 
scales (Greenwood et al., 2018). Spectral methods, in which the solution is achieved in 
Fourier space, offer excellent convergence, however require a regular mesh and impose 
periodicity of the domain of interest although this may be overcome through the use of 
‘embedded domains’ (Chen, 2002).  

In order to resolve the interface shape, and accurately capture variation of the system on 
the scale of the interface, it is necessary to have a mesh be a fraction of the interface width 
d. The actual interface width of a system may be measured experimentally through, e.g. 
transmission electron microscopy, and is typically nanometers in scale. When structures of 
interest are many times larger than a realistic interfacial width, the simulations may become 
prohibitively computationally expensive. Therefore, it is common to exaggerate d to be 
larger than the real interface width (capillary length), but still small compared to the feature 
size of the problem. In some cases, this can result in exaggerated non-equilibrium effects 
such as solute trapping, which may be compensated for through the introduction of an anti-
trapping term to the mass flux equation (Karma, 2001). While a larger interface width 
results in a more computationally tractable problem, the sensitivity of the solution to the 
choice of d then must be checked.  

8.5. Connection to equilibrium thermodynamics 

There is a close connection between phase-field models and CALPHAD (Computer 
Coupling of Phase Diagrams and Thermochemistry). CALPHAD includes databases of 
thermodynamic data for pure and solution phases from which phase diagrams may be 
obtained through free energy minimiser software. The results of CALPHAD calculations 
are typically for bulk systems and insensitive to mesoscale thermodynamic effects. 
Integration with phase-field models in a robust fashion rooted in the Theory of Irreversible 
Processes, introduces interfacial energy and kinetic / non-equilibrium effects and therefore 
provides an avenue for exploration of these phenomena. 

Thermodynamic potentials are introduced directly into the free energy functional through 
the free energy density terms in equations (1) and (12). However, there remain two main 
issues to be addressed: how the model discovers the optimal state of a new phase during 
nucleation, and how the interfacial energy is implicitly related to the thermodynamics of 
the coexisting phases.  

As discussed above, nucleation in either the Cahn-Hilliard or Allen-Cahn model involves 
an energetic barrier associated with interface creation, which must be overcome by the 
liberation of energy by the phase transformation. In this case, information about the state 
of the new phase must be known beforehand from the phase diagram or a coupled free 
energy minimiser. As an example, in a multicomponent system the species concentrations 
within the new phase must be known in order to know when the phase change should 
initiate.  

For Cahn-Hilliard models within the spinodal decomposition region, the concavity of the 
thermodynamic potential allows the system to discover the optimal conditions by itself. 
The interfacial energy is determined from the thermodynamic potential as the distance 
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between the energy curve from the tie line. Through this model it is also straightforward to 
include other sources of interfacial energy, such as coherent elastic strain, wherein the 
strain varies continuously through the interface (Welland et al., 2015; Ulvestad et al., 2015). 
However, this definition of the interfacial energy is only strictly valid near the critical point 
of the miscibility gap where the concavity disappears (Steinbach, 2013).  

In the Allen-Cahn model, excess energy is added explicitly through the double-well term. 
It may then be desirable to avoid implicit energy contributions so that they can be entirely 
controlled explicitly. This becomes challenging within the interfacial region where, e.g. the 
concentration is varying between equilibrium states. One approach to eliminating implicit 
energy contributions is the interface dissipation method pioneered by Steinbach et al. where 
the concentrations of each species in each phase is represented as unknown variables, and 
uses an ‘interface dissipation’ process to transfer mass between phases. This method has 
the drawback of an increasing number of unknown variables, but is able to accommodate 
a wide variety of expressions for the pure phase potentials (Steinbach, 2013; Zhang, 
Steinbach, 2012).  

Alternately, a composite potential, 𝑓𝑓(𝜙𝜙, … ), may be defined which combines the pure 
phase potentials weighted by their phase fractions. Early models considered the 
concentrations to be equal in all constituent phases throughout the interface (Wheeler, 
Boettinger, McFadden, 1992), 

 𝑓𝑓(𝜙𝜙, 𝑐𝑐) = [1 − 𝑒𝑒]𝑓𝑓𝛼𝛼(𝑐𝑐) + 𝑒𝑒𝑓𝑓𝛽𝛽(𝑐𝑐). (18) 

In this model, the pure phases are being evaluated at concentrations away from their 
equilibria which implies variation in the chemical potential throughout the interface, and 
an excess energy associated with neither phase being in the equilibrium state. This is 
illustrated in Figure 8.6. where the free energy curves along with the lowest common 
tangent (tie line) are depicted, along with the composite potential showing a rise in energy 
along the tie line.  
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Figure 8.6. Demonstrative plots of a 2 phase binary system 

Top: Free energy potentials with the global minimum indicated by the lowest common tangent construction. 
Bottom left: The composite profile with equal concentrations, showing the excess energy along the green 

lowest common tangent line. Bottom right: The Grand Potential formulation of the composite potential which 
is flat along the lowest common tangent line, indicating the lack of implicit interfacial energy. 

 

 
Source: Welland et al., 2017  

More recently, a technique, generalised as the Grand Potential approach, was derived on 
the premise that the species chemical potentials are equal through the interface, which 
implies each constituent phase is evaluated at its equilibrium state, 

 𝑓𝑓(𝜙𝜙, 𝑐𝑐) = [1 − 𝑒𝑒]𝑓𝑓𝛼𝛼(𝑐𝑐𝛼𝛼) + 𝑒𝑒𝑓𝑓𝛽𝛽�𝑐𝑐𝛽𝛽�, (19) 

subject to the equality of the chemical potentials, 𝜕𝜕𝑓𝑓
𝜕𝜕𝑐𝑐

= 𝜕𝜕𝑓𝑓𝛼𝛼

𝜕𝜕𝑐𝑐𝛼𝛼
= 𝜕𝜕𝑓𝑓𝛽𝛽

𝜕𝜕𝑐𝑐𝛽𝛽
. This approach maintains 

a constant chemical potential through the interface and eliminates the excess energy. 
However, a problem with the approach is how to determine the phase-concentrations 𝑐𝑐𝛼𝛼 
and 𝑐𝑐𝛽𝛽 that satisfy the chemical potential criterion. This may be done through a nested non-
linear solver or through coupling with a free energy minimisation routine (Nestler, Garcke, 
Stinner, 2005; Choudhury, Nester, 2012). Alternately, if the equilibrium points are known 
a priori, the composite function may be evaluated approximately though, e.g. a local 
quadratic approximation of the free energy curve of the minimiser of the composite scheme 
(Choudhury, Nestler, 2012; Welland, Tenuta, Prudil, 2017). 
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8.6. Summary and future directions 

Phase-field models have shown versatility and robustness in their applications to a wide 
variety of phenomena. Such models are effective in capturing interfacial energy and 
complex interface morphologies and can be coupled with other multiphysics simulations 
such as heat and mass transport, elasticity, fluid flow, etc, in a thermodynamically self-
consistent fashion. Efficient integration with CALPHAD thermodynamic potential 
databases is an ongoing area of development, especially with regards to understanding the 
implicit effects on interfacial energy. Adaptive mesh refinement is also an active and 
important area of development which holds promise for scaling-up the reach of phase-field 
models by reducing computational expense. The diffuse interface concept has been applied 
to other models such as the included-phase model which offer efficient implementations 
for a subset of phenomena (Prudil, Welland, 2017). There exist a number of phase-field 
implementations in a variety of platforms and there have been recent attempts to create 
benchmark problems to compare these implementations (Steinbach, 2013; Jokisaari et al., 
2017; Schwen et al., 2017).  
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9.  A review of the rate theory of defect clustering in irradiated materials 
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Abstract 

9.1. Introduction and background 

Clustering of atomic defects leads to changes in the microstructure of materials, and hence 
induces drastic variations in their properties. We present here a review of the theory of 
atomic defect clustering under non-equilibrium conditions, particularly encountered during 
irradiation of materials with energetic particles. These conditions are met in a wide range 
of technical applications, ranging from nuclear and fusion energy to microelectronics and 
surface engineering. Rate theory methods, which dwell in the intermediate region linking 
the atomic and macro-scales, provide a useful tool in determining the evolution of irradiated 
microstructures at experimentally observable time and length scales. 

In this chapter, we begin with a brief description of the cascade-damage environment and 
the physics of point defects. Classical nucleation theory is then presented in the context of 
point defect clustering. This method is shown to be adequate for obtaining nucleation rates 
for stable clusters with or without internal solute gas generation. To obtain average cluster 
densities, rate theory methods are utilised. Starting from a basic understanding of stochastic 
fluctuations in defect fields, it is shown that one can formulate master equations. When the 
transition probabilities can be replaced by average macroscopic reaction rates, it is shown 
that a deterministic set of rate equations for the concentrations of specific defect cluster 
sizes is sufficient. Following this idea, a reduced-set rate theory model is presented and 
shown to describe materials under irradiation with high helium generation. Next, a 
continuum Fokker-Planck approximation is shown for cases when atomic clusters grow or 
shrink by single atomic defects. When internal sink densities are high, the interaction of 
point defects with sink stress fields is known to cause a substantial imbalance in the loss of 
vacancies and interstitials to sinks. This bias is typically implemented in rate theory models 
to gaugege the effect of point defect segregation on void swelling and creep. We present 
an ‘effective medium’ rate theory approach to calculate dislocation bias factors in metals 
using point defect-dislocation interactions based on properties obtained from atomistic 
simulations. By incorporating point defect fluxes, spatial resolution is attained in the model. 
The chapter concludes with an assessment of the current state and future of rate-theory 
models. 

Clustering of atomic species in materials is a process that embodies a rich variety of 
physical mechanisms, and which has significant implications to a wide range of material 
technologies. Strong deviations from thermodynamic equilibrium conditions drive atomic 
species into agglomeration, as an attempt to reduce the system’s free energy. Materials 
inevitably contain atomic defects, in the form of vacancies, self-interstitials, impurity atoms 
or insoluble gaseous species. In some situations, these defects are externally introduced 
into the material. Examples of this can be found in structures under neutron irradiation, or 
in materials that are processed by ion beams, plasmas, high-speed deformation or other 
high-energy sources. Apart from the valuable insight gained by understanding mechanisms 
of atomic clustering, advancing a multitude of cutting-edge technologies is dependent on 
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finding ways to modify the process of atom agglomeration. Energetic neutrons bombard a 
number of critical materials in nuclear fission reactors. Materials used as nuclear fuels, 
structural materials, the pressure vessel as well as instrumentation materials, are all 
subjected to the generation of non-equilibrium concentrations of atomic defects. Energetic 
neutron collisions with lattice atoms produce intrinsic lattice defects, as well as extrinsic 
impurities or insoluble gas atoms. Likewise, in a fusion energy system, many materials will 
be driven out of equilibrium as a result of intense neutron bombardment. Examples are the 
first wall and blanket structures, plasma interactive components, magnet materials, 
instrumentation and other special-purpose materials.  

In this chapter, we present a review of the theoretical developments in the rate theory 
treatment of atomic clustering. The theory is applicable to atomic species, which broadly 
include lattice or surface atoms, molecules, impurities or point defects. The focus here will 
be to apply the theory to the study of nucleation and growth of precipitates by atomic 
processes and develop methods to solve for the evolution of their size distribution. To 
accomplish this task, we begin with a brief description of the cascade-damage environment 
and the physics of point defects. Classical nucleation theory is then presented in the context 
of point defect clustering to attain nucleation rates of stable clusters. From a basic 
derivation of stochastic fluctuations in defect fields, the development of master equations 
at the atomic level is achieved. A rate theory model is then presented for high helium 
generation rates using a reduced set of deterministic rate equations for defect species. The 
Fokker-Planck continuum approximation is then introduced for cases where the 
agglomeration of atomic clusters is primarily a result of simple atom absorption or 
emission. Lastly, the effects of stress are discussed in terms of internal point defect sinks 
and a spatial rate theory solution is developed to calculate dislocation bias factors in 
irradiated materials.  

9.2. Physics of radiation-induced point defects 

The generation of point defects in materials stems from two primary types of neutron 
interactions with bulk materials, known as elastic and inelastic interactions. These are 
caused by fundamentally different processes and lead to the production of different types 
of defects within materials. Elastic interactions occur when incoming neutrons transfer their 
kinetic energy to a host lattice atom. If the energy transferred by the neutron in this collision 
is greater than the displacement threshold energy, Eth, of the lattice atom, then the atom will 
be ejected from its lattice site. This initial ejected atom is called the primary knock-on atom 
(PKA). This process leads to the production of a vacancy and a self-interstitial atom (SIA) 
within the host lattice. Upon ejection from its lattice site, if the PKA still carries greater 
kinetic energy than Eth, it will lead to the ejection of a secondary knock-on atom, and so 
on. This successive chain of elastic collisions and scattering is referred to as cascade 
damage and has been studied extensively both experimentally and computationally. 
Inelastic interactions occur under high-energy irradiation conditions leading to (n, α) 
transmutation reactions within the host lattice. These interactions lead to the production of 
significant quantities of solute gas atoms within the bulk, namely helium and hydrogen. 
Helium is highly insoluble in metals and therefore highly mobile inside matrix materials.  

The physics of point defects has been a topic of numerous studies within the field of 
radiation damage for some time. It is well known that both vacancies and SIA's agglomerate 
into clusters of different sizes. Vacancies combine to form three-dimensional (3D) voids in 
the vicinity of the primary damage site while SIA's typically combine to form two-
dimensional (2D) glissile or sessile dislocation loops on the periphery. Studies have shown 
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that glissile loops are highly mobile and perform one-dimensional (1D) random motion in 
their slip direction. The production of Frenkel pairs and resulting clusters populate the 
microstructural atmosphere are known to lead to hardening, swelling and creep phenomena 
in irradiated metals. 

In any rate theory study, it is of prime importance to properly identify all critical processes 
that contribute to the production or loss. In radiation damage rate theory, production terms 
may be due to collision cascades, emission from clusters, etc., while loss terms may include 
recombination, absorption into clusters, etc. With the exception of the cascade production 
term, each process is given a rate proportional to the Boltzmann factor for that process. 
Thus, it is required that the energetics of all processes be known a priori.  

The formation energy of a defect is typically defined as the difference in the total energy 
(at zero temperature) of the system containing the defect and that of a system of the same 
number of atoms in their lowest energy configurations. These energies are commonly used 
to determine equilibrium concentrations of defects. As an example, the formation energy 
of a carbon impurity atom in an iron crystal containing N atoms, can be calculated as 

  (1) 

Here, E(N+1) is the energy of the system containing the defect and µFe and µC represent the 
chemical potentials of iron and carbon, respectively. The chemical potential represents the 
energy per atom in a perfect, infinite lattice. Calculations of formation energies are best 
performed using first-principles techniques.    

The migration energy, Em, of a defect represents the activation energy of diffusion within 
the crystal lattice. Lattice vibrations may result in an atomic jump to a neighbouring site 
only if the diffusing defect is carrying kinetic energy equal to or greater than the migration 
energy. Accurate calculations of migration energies may be obtained using first-principles 
calculations with minimum energy pathway (MEP) search methods such as the nudged 
elastic band (NEB) method and the dimer method. These methods allow relaxations of the 
lattice around the defect as the defect treks the reaction co-ordinate to the final state. The 
point of maximum energy along the path represents the saddle point and the migration 
energy can be calculated as the difference in energy between the saddle point configuration 
and the initial state. 

The aggregation of point defects following collision cascades leads to the formation of 
defect clusters in materials. The stability of radiation-induced defect clusters against 
dissociation is governed by the binding energy, EB. The binding energy is defined as the 
energy required to dissociate a bound system into its constituent parts. These energies can 
be calculated in terms of formation energies under the assumption that the products of 
dissociation are infinitely separated. For a dissociative reaction of type C→A+B, the 
binding energy can be calculated as 

  (2) 

The activation energy required for the emission of a point defect from a cluster is taken as 
the binding energy plus the migration energy of the point defect. A representative set of 
values for the formation and migration energies of defects is shown in Table 9.1. Values in 
bold represent results from first-principles calculations. 
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Table 9.1. Relevant energy barriers (in eV) for point defect processes in four materials.  

Values in bold represent results of first-principles studies. 

Process Fe W Cu Ni 

Vacancy Formation 2.12(a), 2.15(b) 3.11(c), 3.16(d) 1.28(e), 1.3(f) 1.62 (g), 1.60 (h,i) 

Vacancy Migration 0.67(j), 0.67(b), 0.87(k) 1.66(c), 1.78(b), 1.8(l) 0.72(f) 1.30(h), 1.29(i) 

Divacancy Formation 3.18(m) 6.70(n) 2.0(o) 3.02(g) 

Divacancy Migration 0.62(j) 1.95(p) 0.55(k) 0.59(q) 

Interstitial Type [110] [111] [100] [100] 

Interstitial Formation 3.86(r), 3.93(b) 9.82(c), 9.548(b) 2.73(s) 4.91(i), 4.93(s) 

Interstitial Migration 0.34(j), 0.30(t), 0.167(k) 0.013(b) 0.078(u), 0.13(k) 0.16(s) 

He Interstitial Form. 4.40(v), 3.37(w) 6.19(d), 6.16(c) 1.97(x) 4.06(y) 

He Interstitial Mig. 0.06(v) 0.07(d) 0.5(z), 0.63(α) 0.66(α), 0.81(β) 

He Subst. Form. 4.23(v), 4.08(w) 4.77(d), 4.70(c) 2.58(γ) 3.13(g), 3.23(γ) 

Source: Corresponding sources for the values represented in the table can be found in the References section 
on page 158 (see the corresponding superscripts following each reference). 

9.3. Classical nucleation theory 

9.3.1. Becker-Döring theory 
Classical nucleation theory, as developed by Becker and Döring in 1935, is a method to 
develop a set of equations to model phenomena such as condensation, evaporation and in 
general, any two-phase system (gas-liquid, crystalline-amorphous, etc.). It is especially 
useful in computations of equilibrium size distributions of phases. In the case of vacancy 
clustering, assumptions of the theory are as follows: 

1. Atomic clusters originate when two atoms come together. 

2. Clusters can grow or shrink by the absorption or emission of single vacancies, 
respectively. 

3. Small clusters may dissociate into monomers, however once a critical size is 
reached, the cluster will grow to a macroscopic size. 

If we let C(m,t) represent the number of clusters containing m vacancies at time t per 
volume, then we can express their rate of change as 

  
(3) 

where R(m|m') is the transition probability rate that a cluster of size m' will grow to size m. 
We can next define the impingement frequency βv(m) and emission frequency αv(m) of 
single vacancies to clusters. These quantities are functions of the vacancy concentration 
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and diffusion coefficient, as well as the cluster surface area, A(m). Under the second 
assumption above, the transition probabilities can then be expressed in terms of Dirac delta 
functions, δ, as 

  
(4) 

 
 (5) 

Substituting these into equation (3) and evaluating the integral, we obtain 

  
(6) 

At equilibrium, ∂C/∂t=0, we can invoke the principle of thermodynamic reversibility, i.e. 
that R(m±1|m)=R(m|m±1). The corresponding concentration is called the constrained 
equilibrium function, C0. This allows αv(m) to be solved for as 

  
(7) 

which is assumed to be valid in non-equilibrium conditions as well. Plugging the expression 
for αv(m) into equation (6) gives 

  
(8) 

This is known as the difference differential equation for nucleation. Expanding each of the 
terms in the brackets in Taylor series about n, it can be shown that equation (8) can be 
written as 

  
(9) 

We note this expression has the form of Fick's second law in a force field with a variable 
diffusion coefficient. This is consistent with the view that nucleation is random walk 
process through cluster size phase space. Viewing βv(m) as an effective diffusion 
coefficient in size space and applying the continuity equation, the cluster nucleation 
current, I(m) can be taken as 

  
(10) 

and the continuity equation in an m-dimensional size space can be given as 

  
(11) 

Thus we have developed a rate equation for the concentration of m-sized voids.   
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9.3.2. Extension to radiation damage 
Following the observations by Cawthorne and Fulton (1967) that the formation of voids 
occurs in metals exposed to fast neutrons, interest in the application of classical nucleation 
theory to radiation damage grew rapidly in the early 1970s. The first such undertakings 
were done independently by Katz and Wiedersich (1971) and Russell (1971). These studies 
extended the classical theory to irradiation cases, where in addition to vacancies, 
interstitials can also contribute to growth and shrinkage processes. Also, radiation-induced 
vacancies and interstitials are produced continuously, leading to the supersaturation of their 
concentrations beyond equilibrium, ultimately changing the size distribution evolution. The 
Gibb's free energy (GFE) of a system containing a concentration distribution, Neq(m), of 
clusters of sizes m, can be expressed as 

  
(12) 

where G0 is the free energy of the perfect lattice, gm is the GFE required to form a void of 
size m, and the last term is the absolute temperature multiplied by the configurational 
entropy. We note that gm is typically estimated as the void formation energy (Ef

m) under the 
assumption of negligible volume and entropy changes in the formation process. Also, Wm 
represents the number of possible ways in which a void of size m can be distributed in the 
lattice, which can be shown to be 

  
(13) 

The chemical potential of a void of size m can be defined as the partial derivative of G with 
respect to the equilibrium concentration of size m voids, or 

  
(14) 

The chemical potential of a single vacancy can therefore be taken as µv=Ev
f+kTln[ΩCv], 

where the vacancy formation energy can be substituted from the equilibrium vacancy 
concentration, given as Cv

eq =Ω-1exp(-Ev
f/kT). The vacancy chemical potential can 

therefore be expressed as 

  (15) 

where Sv=Cv/Cv
eq, is the vacancy supersaturation in the lattice. For the vacancies and voids 

to be in chemical equilibrium, the chemical potential of voids of size m must be equal to m 
times the chemical potential of an individual vacancy. Therefore, the equilibrium void 
distribution function can be solved for from equations (14) and (15) as 

  (16) 
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Under non-equilibrium conditions, we can define the nucleation current (in the phase space 
of cluster size) as the rate at which clusters of size m grow to m+1. This can be expressed 
as 

  
(17) 

Here, the emission of interstitials as a void growth process is neglected due to the large 
formation energy of interstitials. By the condition of thermodynamic reversibility, the rate 
of capture of vacancies to clusters of size m should equal the rate of emission of vacancies 
of clusters of size m+1, and therefore αv can be solved for from equation (7), with C0(m) 
replaced with Neq(m). Plugging this back into equation (17), we obtain 

  
(18) 

where the function h(m) is defined in 

  
(19) 

The ratio of impingement frequencies βi/βv is referred to as the arrival-rate ratio and plays 
a large role in determining the critical void size, mc, which occurs at the minimum of h(m). 
Figure 9.1. shows a plot of the constrained distribution function, h(m), versus cluster size 
for a range of arrival-rate ratios. This figure illustrates the fact that nucleation theory is 
heavily dependent on the parameters used. This is a major disadvantage since in most cases, 
many parameters are not known to a high degree of accuracy. 

Figure 9.1. Constrained distribution function, h(m), versus cluster size, m. 

 
Source: Russell, 1971 
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Approximating the difference in the brackets of equation (18) as the differential d(N/h)/dm, 
the resulting differential equation can be solved under the boundary conditions that N/h 
goes to 1 as m goes to 1 and goes to 0 for infinitely large cluster sizes. The nucleation 
current can then be calculated as 

  
(20) 

where the first term on the right hand side is called the Zeldovich factor, and corrects for 
the fact that some fraction of clusters, which have grown past the critical size, will still 
shrink to smaller sizes. 

The extension of the theory to include the effects of gas atoms resulting from transmutation 
reactions was also accomplished by Katz and Wiedersich (1973) and Russell (1972). The 
derivation of these heterogeneous nucleation models follows the same structure as the 
preceding model, under the assumption that gas atoms are static nucleation sites for voids. 
The number of clusters with j gas atoms per unit volume is taken as Mj, making the total 
concentration of gas atoms, M, equal to Σj=1jMj. The GFE expression takes the modified 
form: 

  
(21) 

where Nj
eq is the equilibrium distribution of gas-vacancy clusters per unit volume 

containing m vacancies and j gas atoms. The configurational term can be calculated as 

 

 (22) 

The presence of gas atoms in voids leads to an internal pressure that aids in stabilising voids 
against dissociation. In a study of cavity growth in the presence of helium, Odette and 
Langley (1975) found that cavities would not grow above a critical size if they contain less 
than a certain number of helium atoms. Furthermore, a bimodal distribution of cluster sizes 
was found under irradiation in the presence of gas atoms. The Calculations of Hayns and 
Wood (1979) also found initial unimodal distributions evolve into bimodal for both 
diffusion and surface reaction limited growth kinetics under irradiation. Typically observed 
bimodal distributions consist of one class with cluster radii of a few nanometers and another 
class with much larger size (Mansur and Coghlan, 1983). The presence of helium has the 
effect of leading to smaller values of the critical size, as the pressure reduces the effect of 
surface tension against collapse. Thus, the reversible work of formation gmj will contain a 
positive contribution due to surface tension and a negative contribution due to the gas 
pressure. Assuming the gas atoms in the matrix are at an effective pressure peq, 
corresponding to the temperature and their concentration, the reversible work of adding gas 
atoms to a cluster at pressure p is jkTln(peq/p). Assuming the ideal gas law holds, the 
pressure can be determined from pV=jkT, where V=mΩ. Estimates for peq can be obtained 
from statistical mechanics models. The reversible work of cluster formation can then be 
expressed as 

  
(23) 
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where γ is the surface energy and the cluster radius R can be taken as (3mΩ /4π)1/3. For 
chemical equilibrium to be satisfied, the condition mµv=µmj must be satisfied, where the 
chemical potential of gas-filled clusters can be taken as 

  
(24) 

Using equation (15) and assuming chemical equilibrium, the equilibrium distribution of 
gas atoms in voids, can be solved for as 

  
(25) 

where ξ=(4π/kT)(3Ω/4π)2/3γ. The exponential term represents the free energy of cluster 
formation. Whereas in the homogeneous void nucleation case this was a function of m 
alone, this term represents an energy surface dependent on both m and j. Solution of the 
nucleation current Ij follows equation (20), with the modification that the critical cluster 
size and h(m) are now a function of j as well. For more information, Mansur and Coghlan 
(1983) provide an extensive review of the effect of helium on the critical void size and 
develop analytical solutions for various conditions.  

9.4. Rate theory models of nucleation and growth 

9.4.1. General clustering rate theory 
Under the non-equilibrium conditions that drive atomic defect clustering, the size of each 
individual cluster grows or shrinks by a process of accretion or emission. The “step” which 
changes the cluster size is controlled by fluctuations in the neighbourhood of the cluster. 
Thus, an appropriate framework for these events is the theory of stochastic processes. 
Defect clusters are either “born” or they “die” with each event. Many physical phenomena 
have similar characteristics, and are generally described as birth-and-death processes. In 
this description, the size of clusters is a randomly distributed variable with each size 
containing any number of atomic species. 

If the size of the transition step is by single atomic defects, then ∆x << x. Here, ∆x is the 
step size and x is a vector of components representing the cluster constituents. Clustering 
may occur via multiple atom aggregation, and ∆x is still smaller than x. Finally, the typical 
case of coalescence is associated with a transition, where ∆x is of the same order of x. In 
the master equation description, one assigns to the system a set of transition probabilities 
describing the process of cluster size variation in size space. Consider that the cluster size, 
x, is discrete, and is represented by a sequence of numbers, each describing the number of 
a particular specie. Thus, instead of the vector notation, we use the index notation, Cijk…, 
representing the fractional concentration of defect clusters containing i defects of type 1, j 
defects of type 2, and so on. The types (i,j,k,…) may be lattice atoms, vacancies, gas atoms, 
etc. The notation can also be extended to more complex defect phases in the solid. Since 
Cijk… is fractional, it is precisely the probability of finding a defect cluster of these 
constituents. The transition probabilities, ω, depend on a set of integers, ∆ijk…, which may 
be positive, negative or zero, and they describe the step size, ∆x.  
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The conditional probability of a transition describing the change of the number (i,j,k,…) 
due to a step, ∆ijk… , is given by 

 
 

(26) 

The fundamental relationship represented by equation (26) is the Smoluchowski-Chapman-
Kolmogorov (SCK) equation, applied to defect clustering. Taking the limit as ∆t→0, the 
master equation is obtained, which describes the birth-and-death process of the cluster. 
Thus, the most general case of defect clustering can be described by the master equation.  

It has been shown that if a Poisson distribution describes the transition probabilities ω, their 
microscopic statistical averages become identical to the macroscopic system averages used 
in reaction rate theories. Thus, the equilibrium laws of reaction rate theory become exact 
consequences of the master equation. Averaging over transition probabilities leads to the 
popular reaction rate theory, which now discards important aspects of defect fluctuations. 
These are related to the system size, range over which fluctuations extend, and correlation 
length over which two parts of the system can feel each other. It can be shown that in a 
system that is macroscopically homogeneous, locally, fluctuations break this homogeneity 
and lead to the emergence of spatial defect patterns. As soon as the system deviates from 
the uniform state described by the spatially averaged rate equations, non-linear couplings 
between neighbouring volume elements take place. As a result, a spatially uniform 
description of defect concentrations becomes inadequate. 

9.4.2. Reduced-set rate theory for high helium generation 
The starting point of the theory of microstructure evolution is the SCK equation for a 
Markovian process. In the continuum limit in size space, equation (26) can be expressed as 

  
(27) 

where C(x,t) is the probability distribution for the stochastic variable x at time t and 
ω(x,x’,t) is the transition probability per unit time from state x to state x’ at time t. If the 
transition probabilities can be replaced by average macroscopic reaction rates, then (27) 
can be reduced to a deterministic set of rate equations for the concentrations of a specific 
defect cluster sizes. This mean-field approximation does not take into account the statistical 
nature of defect production, cascade effects, and the arrival and absorption of single and 
multiple defects at defect clusters. Since defect clustering in irradiated solids is driven by 
the concentration of three types of monomers (vacancies, interstitials, and helium), we 
would have a coupled hierarchy of discrete equations for the probability distribution, C, 
using rate or master equations. Each equation equates the concentration rates to the sum of 
all production and loss rates of the species, stemming from the known physical phenomena 
(trapping/de-trapping, recombination, etc). For the case of radiation-induced helium-
vacancy (HV) clustering, rate theory models have in the past been developed. Following a 
study by Ghoniem et al. (1985), rate equations for the concentrations of vacancies (Cv), 
self-interstitials (Ci), helium interstitials (Cg), helium substitutionals (Cgv), di-helium 
interstitials (C2g), di-helium mono-vacancy (C2gv) and the critical nucleus (C*) can be 
expressed as 



NEA/NSC/R(2019)2 │ 153 
 

STATE-OF-THE-ART REPORT ON MULTI-SCALE MODELLING METHODS 
 

  
(28) 

 
 (29) 

 
 (30) 

 
 (31) 

 
 (32) 

 
 (33) 

 
 (34) 

respectively. Here, the critical nucleus is taken as any cluster containing three helium 
atoms. The production of Frenkel pairs is taken as the displacement damage rate, G, times 
the average fraction of surviving pairs, f. Helium atoms are generated at a rate GH. 
Annihilation at sinks occurs at rates proportional to the concentrations of sinks, which for 
grain boundaries and precipitates, are CGB and Cppt, respectively. Absorption of interstitials 
and vacancies at dislocations is accounted for in the equivalent sink concentrations Cs

i and 
Cs

v, respectively. Expressions for the concentration rates of helium atoms at precipitates 
(Mppt) and grain boundaries (MGB) are given as 

  
(35) 

 
 (36) 

The reaction frequencies of self-interstitials (α), helium (β) and vacancies (γ) and the 
thermal emission probabilities of vacancies (e1,e2) in the above equations are given as 

 
                  

(37) 

where the factor of 48 is the assumed combinatorial number, ν is the atomic jump frequency 
and Em and Eb represent migration and binding energies, respectively. The factor δ is called 
the resolution frequency and represents the probability per displacement for dissolving a 
helium atom back into the matrix, b, times the displacement damage rate.  

Solving the above coupled rate equations in time gives insight into the roles of various 
mechanisms on cluster nucleation rates and their effect on helium transport to grain 
boundaries. During the initial stages of irradiation, helium atoms are generated as 
interstitials, but soon are trapped when vacancies become available. These calculations 
reveal the primary mechanism for reducing helium transport to grain boundaries is the 
growth of bubbles as available sinks. This is shown in Figure 9.2., where the rate of helium 



154 │ NEA/NSC/R(2019)2 
 

STATE-OF-THE-ART REPORT ON MULTI-SCALE MODELLING METHODS 
      

absorption at grain boundaries reaches saturation while the concentration of helium in 
matrix bubbles continues to grow. 

Figure 9.2. Helium distribution at various traps versus time 

 
Source: Ghoniem et al., 1985 

In a study by Stoller and co-workers (2008), a comparison between similar rate theory 
studies and kinetic Monte Carlo methods was presented. Their findings expose the strong 
parameter dependence of rate theory methods while arguing that it remains more 
independent and resistant to errors due to simulation cell sizes.  

9.5. Evolution of the size distribution and the Fokker-Planck approximation 

In certain applications, the spacing between the states is small, and the hierarchy of discrete 
master equations can be replaced by an equivalent continuum Fokker-Planck (F-P) 
equation. It is interesting to note that except for small size interstitial loops, large defect 
clusters have low mobility inside irradiated solids. On the other hand, when we consider 
the formation of surface atomic clusters during plasma or ion beam deposition, the mobility 
of large clusters becomes significant. The transition probability from a defect cluster of size 
x to x’ may be re-defined as 

  
(38) 

We may distinguish between slow and fast variables in the transition probabilities, ω, in 
the SCK equation, as (x, t) and (r=x-x’, τ), respectively. By expanding the function W(r=x-
x’, τ)C(r=x-x’, τ) in a Taylor series for the slow variable, truncating to second order, and 
integrating over an appropriate correlation time, T, we obtain the F-P equation 

 
(39) 

where  and   represent the 

first and second moments of the transition probability, respectively. The first moment 
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represents the elements of a drift vector, while the second is used to derive the elements of 
a dispersion tensor. The indices i and j represent the dimension in cluster size space (1D 
for single specie cluster, 2D for a two specie cluster, etc.). The correlation time, T, is chosen 
to represent the appropriate physics of the relevant transition (for example, inverse of 
arrival frequency for single-atom transitions or cascade production frequency for cascade-
induced transitions). A review of solution methods for the F-P equation can be found in 
Ghoniem (1998). 

9.6. Stress effects in rate theory models and the dislocation bias 

The effect of stress on point defect diffusion has been a topic of great interest for some 
time. It is well known that the presence of internal point defect sinks in irradiated materials 
plays a significant role in the determining the size distribution. Point defect sinks include 
dislocations, voids, grain boundaries, precipitates, and so on, each carrying their own 
associated stress fields. Internal stresses in materials alter the energy landscape for point 
defect diffusion, leading to various macroscopic changes in material properties over time. 
A comprehensive theory of sink strengths was presented by Brailsford and Bullough (1981) 
for various sinks in periodic and random arrays. In general, for a point defect of type η, the 
associated sink strength for a sink of type α (dislocation, void, etc.) can be defined as 

  (40) 

where ρα represents the sink density in the material and Zη
α is the capture efficiency of η 

to α. The capture efficiency represents a ratio of the point defect flux into the sink with the 
associated drift interaction, to the flux into the core due only to random walk diffusion. 
Essentially, it is a measure of the effect of drift in the diffusion equation.  

It is well known that swelling in irradiated metals is greatly enhanced by the preferential 
absorption of interstitials rather than vacancies, to dislocations. This preference arises from 
the stronger interactions interstitials have with dislocation stress fields combined with their 
high mobility in the matrix. A measure of this preference for interstitials is called the 
dislocation bias factor and is computed from the ratio of capture efficiencies of dislocations 
to interstitials and vacancies. The bias can be defined as 

  (41) 

where Zi and Zv are the capture efficiencies of an interstitial and vacancy to a dislocation, 
respectively. These parameters are of utmost importance specifically in radiation damage 
rate theory (RT) codes simulating void swelling and radiation-creep. In the past, many 
authors have developed analytical solutions for the dislocation bias. However, obtaining 
solutions to diffusion equations with non-spherically symmetric sinks has proven a difficult 
task. Wolfer and Ashkin (1975) developed a solution for spherical sinks under the 
assumption that the point defect-sink interaction is strictly radially dependent. This came 
after Ham’s solution (1959) to the steady-state diffusion equation near screw and edge 
dislocations with point defects modelled as centres of dilatation. For interactions with both 
radial and angular dependence, Wolfer and Ashkin (1976) developed a perturbation 
method, extending Ham's work to also include the modulus interaction and externally 
applied stresses. In all of these studies solutions were reached under numerous assumptions, 
including approximate treatments of both the point defect fields and interaction energy.  
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9.7. Space-time rate theory 

Recently, we have developed a finite element rate theory model to calculate capture 
efficiencies and bias factors in irradiated metals. The model implements the diffusive flux 
term allowing for two-dimensional spatial resolution which is not typically observed in 
mean-field rate theory calculations. Additionally, the use of atomistically obtained point 
defect representations (dipole tensors) lead to a much more accurate interaction energy 
expression than has been used in past studies. Departing from traditional mean-field rate 
theory and the assumption of continuous sink densities, we consider the ‘effective medium’ 
approach. In this method, we may consider a single dislocation centred in a finite medium, 
with vacancy and interstitial concentrations maintained constant at an outer boundary. 
These boundary concentrations can be obtained as steady-state solutions using a mean-field 
rate theory approach. In the vicinity of a defect with an associated strain field, the flux of a 
diffusing species, η, is given by Fick's first law as 

  (42) 

where Dη and Cη are the diffusion coefficient and concentration of species η, respectively, 
β = (kT)-1, and Eint is the elastic interaction energy of the point defect with the strain field. 
The capture radius of a species can then be defined such that the condition, ||β∇Eint||=b-1, is 
satisfied. The capture radius defines the approximate distance from the core at which the 
drift force due to the interaction energy matches the thermal motion of the defect. It is at 
this radius that the calculations of the flux are computed, and the diffusion coefficient can 
be taken as a constant. It is important to note that the capture radius is a function of 
temperature, material properties, and the defect's dipole tensor, which will be defined in 
what follows. By applying the continuity equation to equation (42), we obtain the rate 
equation for the concentration as 

  (43) 

where P represents production terms for defect η (Frenkel-pair production rate, mission 
from clusters, etc) and L represents loss terms (recombination, absorption at sinks, etc.). In 
the effective medium approach, the effect of production and loss terms are accounted for 
in the outer boundary concentrations, and thus equation (43) can be expressed as 

  
(44) 

Here, the interaction energy term represents the elastic interaction between the diffusing 
species and a single edge dislocation. To calculate this interaction, we have recently 
developed an atomistic-continuum coupling method in which an elastic representation of 
point defects is made possible by the dipole tensor, which is calculated from the results of 
molecular statics calculations using interatomic potentials. To first order, the kth component 
of the continuum displacement field can be calculated in terms of the Green's tensor 
function G(x) and the defect's dipole tensor P(1) as 

  (45) 
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where repeated indices imply summation. Implementing the anisotropic elastic Green's 
function and displacements from molecular statics calculations, a linear least squares 
solution can be constructed to solve for the components of the dipole tensor from (45). In 
the strain field of an edge dislocation, the elastic interaction energy can be expressed as 
Pij

(1)uj,i
⊥, where uj,i

⊥ represents the displacement gradient tensor due to the dislocation. Upon 
solving for the concentration rates and fluxes, the dislocation bias factor defined by 
equation (41) can be calculated by first computing the capture efficiencies for the interstitial 
and vacancy. This is accomplished via line integrations of the dot product of the flux and 
unit normal along the capture radius. In Figure 9.3.a., the results of these calculations show 
a decrease in capture efficiencies (and bias) as the temperature is increased. This is a result 
of thermal fluctuations increasingly competing with drift forces at higher temperatures. In 
Figure 9.3.b., the results of a separate spatial rate theory model simulating polycrystalline 
tungsten under high heat flux is shown (Crosby and Ghoniem, 2011). Here, a heat transfer 
analysis is coupled with the rate equations, and is solved within the framework of the finite 
element method using a transient segregated solver. By implementing finite element 
techniques, we have shown that spatial resolution can be obtained via the flux term of 
interstitials and vacancies. 

Figure 9.3. (a) Dislocation capture efficiencies versus Temperature for copper and nickel, (b) 
Distribution of helium atoms in polycrystalline tungsten under high heat flux 

      
(a)                                                                                                        (b) 

Source: (a) Seif and Ghoniem, 2011, (b) Crosby and Ghoniem, 2011  

9.8. Conclusions and research needs 

The theory of defect clustering is deeply rooted in statistical physics, and shows fruitful 
results for the study of a variety of interesting physical phenomena. Under irradiation, the 
nucleation rate of critical-size voids is shown to be adequately described using classical 
nucleation theory. To obtain cluster densities, however, rate theory methods need to be 
utilised. Starting from a basic understanding of stochastic fluctuations in defect fields, it is 
shown that one can formulate master equations at the microscopic or atomic level. These 
equations can be treated in a more macroscopic sense by equivalent rate equations, in the 
limit of Poisson probability distributions for transitions between states. When the transition 
probabilities can be replaced by average macroscopic reaction rates, then the SCK equation 
can be reduced to a deterministic set of rate equations for the concentrations of specific 
defect cluster sizes. A reduced-set rate theory model was presented and shown to describe 
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materials under irradiation with high helium generation. When the diffusion of large defect 
clusters in the bulk is slow, and the transitions between states are just between nearest 
neighbours, a useful approximation is obtained, which is shown to be the Fokker-Planck 
continuum theory. In materials with large dislocation densities, the interaction of point 
defects with internal stress fields is known to cause an imbalance in the loss of vacancies 
and interstitials to dislocation sinks. This dislocation bias is implemented in rate theory 
models to gauge the bias effect on void swelling and creep. We have shown a novel 
‘effective medium’ rate theory approach to calculate bias factors in metals using point 
defect-dislocation interactions based on properties obtained from atomistic simulations. By 
incorporating the flux term, a finite element method was developed which allowed for 
spatial resolution in the model. 

In the decades following early radiation damage rate theory studies, the availability of high-
performance computational facilities has grown significantly, enabling large-scale 
atomistic simulations. The rate theory approach, however, remains unique and useful in 
multiple ways. With parameters obtained from atomistic methods such as density 
functional theory and molecular dynamics, rate theory models allow for simulation at the 
experimentally observable time and length scales unlike atomistic methods. In many cases 
this allows for additional parameters to be taken directly from known experimental data. 
Models using the mean field assumption allow for various system statistics to be obtained, 
however, we have shown that spatial rate theory solutions are also attainable which may be 
applied to simulations of heterogeneous microstructures. For the continued progress and 
relevance of rate theory models there are several aspects that need to be addressed and 
improved upon. With such high sensitivity to physical parameters, emphasis must be placed 
on developing a large database of defect energetics obtained using the most accurate first-
principles methods. Activation barriers for important processes must be known to a high 
degree of accuracy to ensure the reliability of these models. An important next step is to 
couple spatial rate theory with other mesoscale methods such as dislocation dynamics, 
where phenomena such as the embrittlement of nuclear materials can be investigated in 
terms of dislocation motion processes. Additionally, efforts are needed to develop methods 
that can incorporate the evolution of the cluster size distribution as a function of space and 
time in an efficient computational manner that does not compromise the basic physics 
underlying the rate theory. 
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10. Finite element based material modelling of nuclear fuel

Joseph Y. R. Rashid 
ANATECH Corp., United States 

10.1. Introduction 

In light water reactors (LWRs) technology, the term “nuclear fuel” is understood to apply 
to a system of fuel rods each of which is composed of two major sub-elements: the ceramic 
UO2 fuel pellets and the zirconium-based alloy cladding. The former is the fission energy 
source, and the latter is the heat transfer medium, which also serves as the primary 
containment of fission products. Modelling of the thermo-mechanical behaviourr of both 
materials, individually and as interacting components of a fuel rod, is one of the most 
important elements governing reactor performance. In a full-length LWR fuel rod, the fuel 
column consists of several hundred cylindrical pellets, which, during normal operation, 
experience fracturing and relocation, swelling, densification, and viscoplastic hot pressing. 
As contiguous bodies, the fuel pellets are subject to rigid body motion and cannot be 
isolated, geometrically and functionally, from the cladding. Consequently, they derive their 
coherency from cladding confinement and, as such, their thermo-mechanical modelling 
requires special numerical techniques to transform a geometrically discontinuous 
behaviourr to a computationally stable continuum. The finite element modelling and 
simulation of this thermo-mechanical behaviourr produces a non-linearlinear system of 
equations, where the fundamental solution variables are the strongly coupled displacement 
and temperature fields. For the coupled displacement and temperature solutions, the 
temperature response will depend on the displacements through the pellet-cladding gap 
thermal conductance, and the mechanical response variable – the stress field – will depend 
on the temperature through the material properties and behaviouralral models. This 
dependency is reflected in both, the constitutive relations and the nodal force-displacement-
temperature system of governing equations.  

A recent review of the current state of the art in LWR nuclear fuel modelling is presented 
by Rashid, Yagnik, Montgomery (2011), placing special emphasis on pellet-clad 
mechanical interaction (PCMI) which governs fuel rods integrity during normal operations 
and under accident conditions. The purpose of the present paper is to describe the materials 
modelling of fuel viscoplasticity and fracture (Rashid, Tang, Johansson, 1974; Rashid, 
1974), which are the behavioural regimes that determine the intensity of PCMI and 
cladding failure potential in LWRs. The computational implementation via the finite 
element method (FEM) has achieved a mature level of practical application, but is confined 
to two-dimensional simulation only (Rashid, Montgomery, Dunham, 2004), with three-
dimensional modelling limited to a few special effects studies (Brochard, Bentejac, 
Hourdequin, 1997). However, full three-dimensional FEM simulations of general 
utility have recently been undertaken (Larzelere, 2010, CASL), but still remain in the 
formative stage. 

The nuclear fuel rod material and spatial domains are: the ceramic fuel pellets, individually 
as contiguous cylindrical bodies or as a continuous fuel column; the void volume and pellet-
cladding gap interface; the metal cladding; and the surrounding coolant channel. The 
thermo-mechanical response of such fuel element is intimately connected with the 
surrounding material; therefore, to convey to the reader a coherent picture of fuel behaviour 



162 │ NEA/NSC/R(2019)2 
 

STATE-OF-THE-ART REPORT ON MULTI-SCALE MODELLING METHODS 
      

modelling from which an assessment of adequacy or future improvements can be made, it 
is instructive to describe the physical environment in which nuclear fuel operates. This is 
depicted pictorially in Figure 10.1., which shows the various physical processes and 
behavioural regimes that result from, and are driven by, the response of the fuel. These 
regimes are depicted through inserts in Figure 10.1., and the interaction regimes 
represented in this figure are greatly influenced by the fuel’s constitutive behaviour and 
thermo-mechanical response. 

Figure 10.1. Interfaces and behavioural regimes in LWR fuel 

 
Source: Rashid, Y.R., S.K. Yagnik and R.O. Montgomery, 2011. 

The mechanical response of the fuel pellets to the temperature spatial distribution causes 
the pellet to hourglass and fracture radially and axially in a semi-random pattern, with 
radially oriented cracks as dominant feature. Circumferential cracks can occur under 
cooling during power reduction, and the resulting fracture pattern becomes a three-
dimensional (3D) fragmentation pattern. As the pellet fragments relocate radially outward 
under time varying power history, the resulting change in the fuel-cladding gap can produce 
a change in the gap conductance, with a corresponding change in the heat transport to the 
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cladding and the surrounding coolant. Pellet-cladding contact eventually begins and the 
resulting mechanical interaction (PCMI) can exert localised hoop stress at the cladding 
inner surface at radial pellet cracks, which, in the presence of fission products can lead to 
stress corrosion cracking (SCC) failure of the cladding. This failure mechanism came to be 
known by the acronym PCI, which characterises the chemical effect of PCMI, and is the 
primary failure mechanism under normal operations. The PCMI/PCI effects are further 
aggravated by the combined damage of pellet radial cracks and manufacture-induced 
chipped pellet corners, known as missing-pellet-surface (MPS). Under transient conditions, 
cladding heat-up can occur due to inefficient heat transfer to the coolant caused by one of 
several transient regimes such as power-coolant mismatch, reactivity insertion accident 
(RIA) or loss of coolant accident (LOCA). The resulting cladding deformations during such 
events lead to a loss of confinement of the fractured fuel pellets and induce rigid-body like 
relocation motion. A high fidelity fuel model must have the capabilities to account for all 
of these behaviour regimes (Rashid, Montgomery, Dunham, 2004). 

Under the thermal-hydraulic and the thermo-mechanical behaviour regimes represented in 
Figure 10.1., both fuel and cladding material elements are subject to viscoplasticity and 
fracture, evolving differently in the two materials, with the ceramic fuel exhibiting the more 
complex constitutive behaviour. In the present mathematical construct, emphasis is given 
to the ceramic fuel pellet, which, with appropriate restrictions on certain model parameters, 
can be generalised to the cladding material. In this respect, we identify two unique features 
that distinguish the constitutive behaviour of fuel pellets from that of the cladding, as well 
as metallic materials in general. The first unique feature is that the ceramic pellet, being a 
porous compact of sintered uranium oxide powder, exhibits non-zero volumetric 
viscoplastic dilatation, as compared to zero plastic volume change in metals. The second 
unique feature is that fracture in the fuel pellet is an inherent behaviour regime under 
normal operating conditions, and consequently is modelled as a constitutive property in the 
stress-strain relations. This results in non-linear time-dependent force-displacement 
equations during all deformation stages, including small deformations where linear 
behaviour is expected in other materials. In contrast, fracture in the cladding is calculated 
as an end limit state, for comparison with a failure criterion, and, unlike the fuel pellet, is 
seldom treated during the course of the computations as a propagating fracture. 

FEM is uniquely suited for the computational simulation of the above described thermo-
mechanical behaviour, especially in the treatment of pellet fracture, which is modelled as 
multi-axial direction-dependent distributed damage. This type of modelling fracture frees 
the computational simulation of crack evolution and propagation from the rigid constraints 
of the computationally averse classical fracture mechanics. The constitutive formulation 
presented below reflects this unique adaptability of the FEM to the treatment of the 
interdependency between the material behaviour and the numerical simulation of the 
overall global response. 

10.2. Modelling of UO2 fuel viscoplasticity 

Fuel viscoplastic behaviour under plastic flow and creep is modelled by first prescribing a 
yield potential function and flow rule that admit plastic volume change, which was 
characteried experimentally as hot pressing (Kaufman, 1961). A yield potential function is 
chosen that is essentially an extension of the von Mises yield condition to include a 
dependence on the first invariant of the stress tensor. Similarly, a creep flow rule is 
postulated in which a creep volumetric compression is assumed to be related to a Poisson’s 
ratio type parameter. Further more, the yield surface is non-symmetric in the stress space, 
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as will be shown later, and the material behaves elastically in tension until it fractures. The 
yield function has the form 

 ,022
12 =−+= kJJF α  (1) 

The associated flow rule of this function is 

 ( )ijij
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And the plastic volumetric incremental change is 
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Equation (3) states that the plastic volume change is proportional to and of the same sign 
as J1, hence, equation (1) provides for plastic densification under isotropic compression. 
The quantities J1 and J2 in Yield function (1) are defined as follows: 
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where σij are the co-ordinate stresses, Sij are the deviatoric stresses given by, 

 
.

3
1

ijkkij ij
S δσσ −=  

(6) 

10.2.1. Determination of α 
An assessment of this parameter is made by considering an idealised model of porous 
material. In doing so, the following assumptions are made: 

1. Macroscopically, the porous material is viewed as a homogeneous continuum. This 
continuum consists of numerous cells structured as spherical pores surrounded by 
spherical shells. 

2. These shells are closely packed as shown in Figure 10.2. and the interstitial material 
between the shells transmits forces but does not contribute to the strength of the 
material. 

3. The cell is much larger than a microscopic element; therefore, its stress and strain 
fields can be analysed within the framework of continuum mechanics. 
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Figure 10.2. Plane cross section of the idealised model of porous material (not to scale) 

 
Source: Rashid, Y.R., H.T. Tang and E.B. Johansson (1974). 

For the array shown in Figure 10.2., 74% of the material volume is in the spherical shells 
and 26% is in the interstitial material. Under hydrostatic compression, the spherical shell 
will yield if 

 

 𝑃𝑃 = 2𝑌𝑌𝑠𝑠 ln(𝑟𝑟2/𝑟𝑟1), (7) 

where, Ys is the yield strength of the solid material surrounding the pores; r2 and r1, are 
outer and inner radii of the shell; and P is the pressure required to yield the shell. Equation 
(7) is obtained straightforwardly by solving the equilibrium equation subject to the von 
Mises yield criterion (Hill, 1950). The volume fraction of the pore referred to the spherical 
shell is (r1/r2)3 and referred to the total volume is 0.74(r1/r2)3. If we let ρ be the theoretical 
density fraction referred to the total volume, such that 1-ρ = 0.74(r1/r2)3, and substituting 
for r1/r2 into equation (7) gives, 

 ( ){ }ρ−= 1/74.0ln
3
2

sYP  
(8) 

This relation can be used together with the yield criterion to determine a value for α. In the 
case of hydrostatic compression, J2 = 0, J1 = 3P, and equation (1) has the form 

 .9 22 KP =α  (9) 

At initial yielding K = (1/√3) Y(ρ0) and eq. (9) gives 

 ( ){ } ,)3(3/
2

0 PY ρα =  (10) 

where, ρ0 is the initial density fraction, and Y(ρ0) is the uniaxial yield stress of the porous 
material at density fraction ρ0. Substituting equation (8) into equation (10) and setting ρ = 
ρ0 yields 

 ( )
( ){ }

.
1/74.0ln32

/
2

0

0













−
=

ρ
ρ

α sYY
 (11) 



166 │ NEA/NSC/R(2019)2 
 

STATE-OF-THE-ART REPORT ON MULTI-SCALE MODELLING METHODS 
      

The numerator in equation (11) is the ratio of the flow stress at the initial density to the 
flow stress of the solid material surrounding the pores. It is seen that as ρ0 becomes larger, 
Y(ρ0) approaches Ys, and if ρ0 = 1, α  = 1, which corresponds to von Mises material. In the 
above, 

 ρ0:  Initial (as-manufactured) fractional density of the fuel 

 Y(ρ0): Initial yield strength of the fuel 

 YS:   Yield strength of solid (100% dense) UO2 

Except for YS, the parameters in equation (11) are known for a typical fuel design. Because 
it is virtually impossible to determine YS experimentally, and porosity dependent yield 
strength data is not available for extrapolation to zero porosity, it is necessary to estimate 
YS in order to make use of the above expression for α. However, it is possible to avoid this 
process by allowing Y(ρ0) to approach YS as ρ0 approaches unity and then calculate an 
asymptotic value for α. Using this procedure α is calculated as follows: 

 ( )( )( )[ ] 005.0174.0ln321lim
2

0
10

=−=
→

ρα
ρ

 
(12) 

This value of α was found to give best results with respect to observed behaviour of PCMI.  

10.2.2. Creep law 
Utilising a creep flow rule, the creep strain rates are determined from the following pair of 
flow rules: 

 ,ij
c
ij JSe =  (13) 

and 

 ,ii
c
ii Lσε =  (14) 

where, J and L are general functions of stress, strain, temperature and c
ijε  are the deviatoric 

strain rate tensor defined by 

 
.

3
1

ij
c
kk

c
ij

c
ije δεε  −=  

(15) 

Combining equations (13), (14), and (15) yields 

 
.

3
1

ijkkij
c
ij LJS δσε +=  

(16) 

Contracting both sides of equation (13) and substituting the following effective strain and 
effective stress expressions: 

 2/1

2
3







= c

ij
c
ij

c
e ee ε  (17) 
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,

2
3 2/1







= ijije SSσ  (18) 

gives 

 ./ e
c
eJ σε=  (19) 

where J is seen to be the specific creep rate in shear, which is generally a function of time, 
stress, temperature and neutron flux. 

Returning to the second flow rule which defines the dilatational creep rate, equation (14), 
we observe that the function L is the specific creep rate under hydrostatic stress, which, like 
J can be derived from creep tests generated under 3D stress conditions. Such tests, however, 
are limited and therefore assumptions have to be made to permit stress analysis. In order to 
make use of a single creep rate function, namely J, the dilatational creep response is 
assumed to have the same time dependence as the creep in shear, implying that L would 
differ from J by a constant. This leads to the assumption that Poisson’s ratio for creep 
remains constant with time but may take on a different value for creep from the elastic 
value. On this basis, the combined flow rule, equation (16), becomes: 

 ,klijkl
c
ij JB σε =  (20) 

where,  

 ( ) ( ) klijjlikijklB δδνδδν 00 5.05.0 −−+=  (21) 

and ν0 is a new parameter which governs the dilatational creep response. The value of this 
parameter falls in the range 

 νν −≤≤ 5.00 0  (22) 

where, ν is the Poisson ratio for creep. From equations (21) and (22) it is clear that if the 
creep volumetric compression parameter ν0 is zero then the material is incompressible 
under creep, in which case the combined flow rule, equation (20), reduces to the usual flow 
rule, equation (13). 

10.2.3. Determination of ν0 
The value of ν0 ranges from zero for incompressible material to (0.5 – ν), where ν is the 
Poisson ratio for creep of the porous material. In order to establish a value for this 
parameter, we employ the same idealised material model used in the determination of the 
plastic compression parameter α. Assume that the material surrounding the pores obeys a 
creep law of the form 

 ,nAσε =  (23) 

where, A and n are material constants. Under hydrostatic compression, the tangential creep 
rate at the outer surface of the spherical shell is solved in Hill (1950) and has the form 
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2
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2 /3
12

ε  (24) 

where, r2, r1 and P are defined in equation (7). Substituting the expression 1-ρ = 0.74(r1/r2)3 
for r1/r2 into equation (24), we obtain 

 

( ){ }
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t P
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A









−−






=

11/74.0
1

2
3

2 /1ρ
ε  (25) 

Equation (25) is equal to 2rr at r = r2 with r  being defined as the rate of the radial 
displacement of the spherical shell. Viewing the spherical shell as the basic element 

composing the porous material, tε of equation (25) is then the uniaxial strain rate of the 
porous material. Consequently, the volumetric strain rate is 

 
tp εε  3=  (26) 

From equation (23) and the modified creep law, the volumetric strain rate under hydrostatic 
compression is 

 n
n AP06νε =  (27) 

Thus, treating the porous material as a homogeneous material, the creep parameter ν0 can 
be determined by substituting equation (25) into equation (26) and setting np εε  = , which 
yields 
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


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11/74.0
1
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1

/10 ρ
ν  (28) 

As ρ approaches 1 ν0 approaches 0, and at 100% density the material becomes creep 
incompressible. 

10.2.4. Derivation of constitutive equations 

Consider a material element where it is assumed that the strain rate tensor ijε  can be 
expressed in incremental form as the sum of four components: elastic, time-independent 
plastic, creep and free expansion; namely, 

 f
ij

c
ij

p
ij

e
ijij ddddd ε+ε+ε+ε=ε  (29) 

The elastic strains are related to the incremental stress by 

 ( ) klijklklijklklijkl
e
ij dCdCCdd σ+σ=σ=ε  (30) 
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or by the inverse relation 

 ( ) e
klijkl

e
klijkl

e
klijklij dDdDDdd ε+ε=ε=σ  (31) 

Equations 30 and 31 admit the variation of the material tensors Cijkl and Dijkl with 
temperature and neutron flux. For isotropic material, which characterises UO2 pellets, they 
reduce to 

 
klijEjkikE

1
ijklC δδ−δδ= υυ−

 (32) 

 
( ) ( ) klij211

E
jlik1

E
ijklD δδ+δδ= υ−υ+

υ
υ−  (33) 

where, E is Young's modulus and υ is Poisson's ratio.   

The plastic strain increments must obey a flow rule of the form 

 ( )ij
p
ij Fdd σ∂∂λ=ε  (34) 

where, F is defined in equation 1 and dλ is a positive scalar function which depends on the 
state of stress, strain, temperature, hardening and neutron flux. Combining equations 20, 
21, 29, 30, 31 and 34 the incremental stress-strain relations may be written as 

 





 −−−−= ∂

∂ f
klmnklmnmnklmn

l
klijklij dCdJBtdddDd

k

F εσσλεσ σ
 

(35) 

In the above equation, the scalar function dλ remains to be determined. This is done with 
the aid of the consistency condition which ensures that the stresses remain on the yield 
surface during plastic flow, and is given by 

 0=++= ∂
∂

∂
∂

∂
∂ dKddFd K

FFF p
ijij

ij
p

ij
εσ εσ  

(36) 

This equation admits the dependence of the yield function on the temperature and neutron 
flux through the parameter K. Making use of equations 34 through 36, and after some 
manipulation, the final form of the incremental stress-strain law is found to be 

 
ij*mnmn

l
klijklij dddDd

k

F ψ−





 εΛη−ε=σ σ∂

∂  (37) 

where, 
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FFFF
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(38) 

 f
klpqklmnmnklmnklkl dCdJBtddd εσσεε −−−=*  (39) 
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K
FF
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<=η

∂
∂

σ∂
∂  

(41) 

Rather than continue with the cumbersome indicial notation, we switch to the more 
convenient matrix notation, which is highly adaptable to implementation in the finite 
element method, as well as for formulating pellet fracture as will be shown later. After 
substituting for the various derivatives in equations 37 through 40, and casting the results 
in matrix notation, we obtain the following final form of the incremental stress-strain matrix 
equations: 

 ( ){ }
( ) ( )~1~

1

1~~~~

22 δβη

σεεσ

nnnQ
KK

nn
f
nnn

ISCMJI

CBJH

+++

∆+−∆−∆=∆

−

≈≈
∆

−≈≈≈
 (42) 

in which 

 ( )[ ]
≈

−

≈≈≈≈≈
∆++= DCBJDIM n

1  
(43) 

 ( ) ( )( )
≈≈≈≈

++−= MISISMQMH T
nnnn ~1~~1~ 22 δβδβη  

(44) 

 ( ) ( ) ( ) ( )~1~~1~~1~~1~ 223
222 δβδβδβδβ nn

T
nnnn

T
nn ISISISMISQ E +++++= ′

≈  (45) 

In the above, the subscript n refers to time step tn, nε∆ is the incremental strain vector, 

n~σ∆  is the incremental stress vector, f
n~ε∆  is the free expansion incremental strain 

vector, S  is the deviatoric stress vector, ~δ  is the Kronecker delta in vector form, 
≈
D  is the 

elasticity matrix, 
≈
I  is the identity matrix, 

≈
∆ C  is the change in 

≈
C  due to a change in 

temperature and/or fluence; the other symbols have been defined. Equation 42 is the matrix 
equation that is modified for pellet fracture, as shown next, and is utilised in the derivations 
of finite element stiffness and force matrices. 

10.3. Constitutive modelling of fuel pellet fracture 

Cracking under normal operations is an inherent behaviour of solid fuel pellets, and as such 
it plays an important role in the fuel relocation and fuel-clad mechanical interaction 
mechanisms. It is modelled as a multi-axial direction-dependent distributed damage, 
(distributed over the element integration-point volume), in the constitutive relations and in 
the formulation of the equilibrium equations.  
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10.3.1. Uniaxial response 
A typical representation of the tensile response of the material is displayed in Figure 10.3. 
which shows an initially linear behaviour up to a peak point followed by a strain softening 
regime. The peak point on this figure is the crack initiation point; however, the crack is not 
fully formed until the end of the strain softening regime, which can extend to a strain that 
is five to ten times larger than the fracture initiation strain. The modelling of this post-peak 
response of the material is very important to the behaviour of the fuel pellet, particularly 
under cyclic power histories where pellet expansion and contraction, which influences the 
gap conductance and consequently the thermal response, are greatly affected by that 
regime. Experimental stress-strain data in tension for fuel pellets is totally lacking. 
However, Figure 10.3. was constructed using the observed response of ceramic materials 
which generally exhibit the strain softening response shown in the figure. By knowing the 
fracture stress or strain and the elastic modulus and making an assumption on the extent of 
the strain softening regime, a normalised form of the stress-strain curve can be constructed 
as shown in Figure 10.3. It should be noted, however, that the model is not very sensitive 
to the shape of the strain softening curve. Using the analytical fit in Figure 10.3., the 
normalised stress is expressed as 

 f
f

/CeBA εε−+=σ
σ  (46) 

where, εf and σf are the fracture strain and stress respectively and A, B and C are functions 
of the ratio ε0/εf, where ε0 is the crack opening strain when the crack is assumed to be fully 
formed. 

Figure 10.3. Normalised tension response curve for ceramic materials 

 
Source: Rashid, 2019 

For strains greater than ε0, the material is not allowed to support any tensile stress normal 
to the crack plane. In the strain softening range between the peak point ε = εf and ε = ε0, 
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the material loses its stiffness and sheds the tensile stress gradually. This behaviour, 
however, is valid only for previously un-cracked material, but once the crack becomes fully 
formed, the material loses its tensile stiffness capacity in the normal direction to the crack 
regardless of the magnitude of the tensile strain. However, under strain reversals during 
power cycling, the crack is allowed to close and develop compressive stiffness even under 
residual tensile strain. This compressive stiffness recovery occurs gradually, from a very 
small residual value until the strain across the crack plane reaches ε0, then gradually 
increasing to full value when the calculated crack strain becomes negative. This stiffness 
history is derived using a non-dimensional crack history parameter e(t), as will be discussed 
below. Equation (46) can be written as follows for ε > εf. 

 f
f

f

ff

/CeBA εε−ε
ε
ε

ε
+== σ

σ
σ
σ  

(47) 

recognising that σ/ε = E and σf/εf = E0 , where E is the post-peak (cracking) modulus and 
E0 is the initial (elastic) modulus, and introducing the definition of e(t), equation (47) 
becomes 

 ( ) ( ) ( )f/C
f0 eBAEEte εε−+εε==  (48) 

The function e(t) takes on the values of unity and zero respectively for the conditions ε ≤  εf 
and ε ≥  ε0. In the range εf < ε < ε0, e(t) will have a value between unity and zero according 
to equation (48). In this sense, e(t) can be regarded as the memory function of the crack. 
This expression for e(t) will be used to modify the constitutive relations for the fuel pellet. 

10.3.2. Multi-axial fracture 
The preceding discussion dealt with the uniaxial response in tension. To generalise this 
one-dimensional (1D) response to two- and 3D stress states, the smeared-cracking model 
(Rashid, 1974) is utilised in which cracking is modelled as a direction-dependent damage 
distributed over the volume assigned to the element integration point. The crack is assumed 
to initiate at a point when the calculated principal strain reaches the material fracture strain 
as a temperature-dependent material property. The crack surface is the perpendicular plane 
to the principal direction. A failure/yield surface is illustrated in Figure 10.4., choosing, for 
convenience, a two-dimensional (2D) stress state. Stress states in the compression-
compression quadrant of Figure 10.4. are characterised as elasto-plastic regimes, and for 
stress states in the positive-positive or positive-negative quadrants of the failure surface, 
the material responds elastically until the stress state reaches the failure surface where the 
material will fail in the cracking mode; the tangent to the failure surface determines the 
orientation of the crack surface. 
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Figure 10.4. 2D failure/yield surface for UO2 fuel pellet represented in principal stress space 

 
Source: Rashid, 2019 

Consider the strain state n~ε , expressed in the principal co-ordinate system, then the 

transformation of the co-ordinate strains n~ε  to n~ε  is 

 n~n~ P ε
≈

=ε  
(49) 

where 
≈
P  is function of the direction cosines of the principal direction unit vectors. 

Transforming the incremental quantities n~ε∆  and n~σ∆  to the principal axes gives: 

 n~n~ P ε∆
≈

=ε∆  
(50) 

 

n~

T
1

n~ P σ∆







≈

=σ∆ −  (51) 

The transformed vectors n~ε∆  and n~σ∆  and the untransformed vectors n~ε∆  and 

n~σ∆  must, by conservation of energy, satisfy the inner product relation: 

 
n~

T
n~n~

T
n~ σ∆ε∆=σ∆ε∆  

(52) 
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Re-writing equation (42) in short form 

 nn~n~ ~
RH −ε∆

≈
=σ∆  

(53) 

where, n~
R  is an internal stress vector which contains the rest of the terms in equation 

(42). Transforming equation (53) to the principal co-ordinate system yields 
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RPH 
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
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
≈

−ε∆
≈
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where, 
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
≈

=
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 (55) 

Now the memory function e(t) introduced in equation (48) can be generalised to describe 
the history of a crack in a principal plane, i.e. ei(t) describes the history of the crack whose 
normal is in the ith principal direction, namely, 

 ( ) ( ) ( ) 3,2,1i,eBAte f/C
ifi =+εε= εε−  (56) 

Applying equation (56) to (53) leads to the following incremental stress-strain equation 
expressed in the principal co-ordinate system: 
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(57) 

where, 
≈
E  is a diagonal matrix whose diagonal elements are functions of the three possible 

crack histories ei(t), i = 1,2,3, defined by equation (56). Specifically, for the axisymmetric 
2D case, 

 



















=
≈

31

3

2

1

ee000
0e00
00e0
000e

E  
(58) 

In plane stress 
≈
E  defines two possible orthogonal cracks. In an axisymmetric stress state, 

however, a third crack surface can develop along a radius, which implies the existence of 
an infinite number of such cracks. Figure 10.5. shows the three possible crack types that 
can develop in the fuel pellet in axisymmetric representation. 
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Figure 10.5. Fuel cracking pattern in axisymmetric fuel rod representation 

 
Source: Rashid, 2019 

In the present development the cracks can follow independent histories, including crack 
closing and possible healing if the fuel temperature rises above the sintering temperature. 
Finally, equation (57) is transformed back to the original co-ordinate system with the result 
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where, 

 
≈≈≈

=
≈

− PEPZ 1  
(60) 

 









++′








≈≈

++















≈

∆+
≈

+∆
≈

=
−

−
∆

~
212

~ 1

1

1~~ δβησε JSCMJCBJHR nnnn
f
nn Q

KK  (61) 

10.4. Finite element implementation 

Implementation of the above formulation in finite element analysis follows standard 
procedures, which are familiar to most numerical analysts, and need not be repeated here. 
However, the state of the art of finite element modelling of nuclear fuel is limited to 2D 
simulation, and the best known finite element based fuel performance code, and most 
functional as an industry tool, is EPRI’s Falcon (Rashid, Montgomery, Dunham, 2004). 
Encouraging 3D finite element simulation of fuel response was developed by CEA using 
the 3D Toutatis code, Figure 10.6., (Brochard, Bentejac, Hourdequin, 1997). It should be 



176 │ NEA/NSC/R(2019)2 
 

STATE-OF-THE-ART REPORT ON MULTI-SCALE MODELLING METHODS 
      

noted, however, that such 3D simulations still remain as special-effects research studies 
rather than a routine fuel performance evaluation tool. 

Figure 10.6. 3D simulation of fuel pellets deformation in CEA’s Toutatis Code 

 
Source: Brochard, Bentejac, Hourdequin, 1997 

With the exception of the Falcon code cited above, the nuclear industry’s current practice 
in fuel performance modelling and analysis utilises finite-difference-based 1D axially 
stacked radial representation, referred to in the literature as 1½-D simulation. The 
movement towards higher dimensional simulation is discouraged by the large efforts 
needed for re-licensing fuel performance codes. However, efforts at developing 3D fuel 
behaviour codes have been initiated by the US Department of Energy at INL and ORNL 
within the NEAMS and CASL programmes (Larzelere, 2010), which are aimed at enabling 
science-based nuclear energy systems through advanced modelling and simulation, the 
outcome of which would be a new generation of high fidelity fuel behaviour codes. 

10.5. Model limitations 

The fuel’s viscoplastic and fracture behaviour described above models the material as a 
continuum. With respect to pellet cracking, the constitutive model formulates pellet 
fracture in a framework that avoids computational instabilities which are inherent in a 
contiguous assembly of individual pellets due to rigid-body motion of the pellets and the 
cracking-induced pellet fragments. The above constitutive formulation of pellet fracture 
produces regular fracture patterns, which are clearly at variance with the observed random 
cracking. This limitation, however, is not particularly conducive to improvement through 
research since there is no known mathematical construct by which random processes 
become deterministic phenomena. 

Another limitation of the model is that the evolution of the microstructure of the fuel 
material during irradiation is not represented in the model. This includes the high burnup 
structure and the evolution of the highly porous zone at the pellet periphery and the fission 
gas pressurised pores within the grains and at the grain boundaries. These porosities, unlike 
the uniformly distributed manufacturing porosities described above, are operationally 
induced randomly distributed pores that play a major role in fuel fragmentation during loss 
of coolant accidents. Characterising the associated fuel microstructure requires meso-scale 
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and even atomistic-scale modelling approaches for which atomistic theory and 
computational simulations can be of great value (Stan, 2009). 
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Conclusions 

The most important deficiency in our understanding of irradiated material behaviour is 
microstructure evolution. The initial microstructure of fuels and structural materials is 
structurally and chemically complex. By necessity, approximations must be made to 
represent this complexity in a computational model. As the material undergoes irradiation, 
fission products are introduced and the chemistry changes. In addition, defects and fission 
products migrate under a non-uniform temperature and stress field leading to anisotropic 
swelling, gas release, segregation of species, nucleation and growth of new phases, and 
recrystallisation. At the macroscale, chemical, mechanical and thermal effects can combine 
to drive complex process, such as pellet-clad interaction, resulting in material failure. 
Modelling these interrelated processes in a reliable fashion remains an ongoing challenge.   

This report describes computer simulation methods and models for studying nuclear fuels 
and structural materials across length and time scales. While some aspects of materials 
degradation under the combined effects of stress, elevated temperature and radiation can 
be isolated and studied at a given scale, it is essential to integrate models across scales to 
obtain a predictive understanding of the performance of materials. 

At the most fundamental level, electronic structure calculations provide valuable 
information about point defect properties and interfacial energies. Ab-initio molecular 
dynamics (AIMD) enables the accurate simulation of a small collection of atoms over the 
nanosecond time scale. One can construct simple models of interfaces to understand 
segregation, interfacial transport and the early stages of phase formation. This method is 
especially relevant to the study of dissimilar material interfaces that are ubiquitous in 
nuclear materials but are challenging to model with existing interatomic potentials. 

Classical molecular dynamics (MD) and accelerated dynamics methods offer the promise 
of extending the length and time scale of the simulation far beyond that possible with 
AIMD. However, the lack of reliable interatomic potentials remains a constraint. Electronic 
structure calculations can be used to determine properties of interest that are not available 
experimentally. A database of such properties can be used with machine learning to develop 
reliable potentials for complex materials systems. Most of the existing potentials are non-
reactive and are unsuitable for modelling reactive chemical processes. At the same time, 
the available reactive force fields have not been rigorously tested and validated for nuclear 
materials. Existing potentials are parameterised for equilibrium properties but are often 
used to simulate systems driven far from equilibrium and outside the range of applicability 
of some potentials. This is especially a concern when fixed charge models are used to 
describe environments where charge transfer occurs. Even the widely studied Fe-Cr system 
does not have a completely reliable potential. It is therefore quite challenging at present to 
study alloys with more than two components by MD simulations. There is clearly a 
continuing need to develop, test and validate potentials for nuclear materials. It is also 
essential to continue the development of on-the-fly kinetic Monte Carlo methods that use 
machine learning to predict barriers instead of tabulating all possible events a priori. Such 
an approach is valuable when the local environment evolves rapidly and causes changes to 
the reaction rates and pathways. 

There is considerable potential to connect density functional theory, MD and experimental 
data – e.g. transmission electron microscopy observations – with dislocation dynamics and 
crystal plasticity, to understand the mechanical behaviour of materials in extreme 
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environments. In addition, dislocation dynamics can be coupled with rate theory to provide 
insights into the failure of nuclear reactor materials. Information from the atomic level can 
be coarse-grained using the phase-field approach in order to extend the understanding to 
the continuum scale and explore nuclear materials phenomena across scales. The 
methodical integration of models will help us gradually replace empirical models in current 
computer codes with physics-based predictive models. 

Finally, there is a pressing need for uncertainty quantification, verification and model 
validation in nuclear materials research. These must be performed for models at each scale.  
Validation requires experimental data. If such data is not available, validation experiments 
and lower length scale simulations must be designed to generate the needed data. In 
addition, the links and parameters passing between models must also be rigorously 
validated. Machine learning methods are being increasingly adopted in materials research. 
The nuclear materials community must combine the power of data analytics with physics-
based models to gain new insights into materials degradation. The emergence of new 
computer architectures poses a challenge in relation to the reprogramming of existing 
codes, but it also offers the promise of reaching length and time scales well beyond what 
is possible at present.  


	List of abbreviations and acronyms 9
	Executive summary 13
	1. Density functional theory 16
	1.1. Introduction 16
	1.2. The first-principles approach and the density functional theorems 16
	1.3. Choice of functionals 19
	1.4. Density functional theory implementations 21
	1.5. Scope of density functional theory 23
	1.6. The use of density functional theory in nuclear materials research 24
	1.7. Conclusions and outlook 25
	References 25
	2. Ab-Initio molecular dynamics 29
	2.1. Introduction 29
	2.2. Molecular dynamics 30
	2.3. An ab-initio potential 31
	2.4. Ab-initio molecular dynamics 36
	2.5. An efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics 39
	2.6. Conclusion 45
	Acknowledgments 46
	References 46
	3. Classical interatomic potentials 51
	3.1. Introduction 51
	3.2. Key issues in developing classical potentials 52
	3.3. Classification of classical potentials 53
	3.4. State of the art in classical potentials for nuclear fuel cycle materials 55
	3.5. Challenges and future direction for development of classical potentials for nuclearmaterials 64
	3.6. Conclusions 66
	References 66
	4. Molecular dynamics 68
	4.1. Introduction to molecular dynamics 68
	4.2. Modelling radiation damage using molecular dynamics 70
	4.3. Limitations/challenges 74
	4.4. Future developments 77
	References 78
	5. Atomistic simulation methods for long-time dynamics in materials for nuclear energy systems 81
	5.1. Introduction 81
	5.2. Parallel-replica dynamics 83
	5.3. Hyperdynamics 85
	5.4. Temperature accelerated dynamics 88
	5.5. Adaptive kinetic Monte Carlo 91
	5.6. κ-Dynamics 92
	5.7. Example applications 93
	5.8. Limitations and ongoing challenges 97
	5.9. Advances from 2013 to 2018 98
	5.10. Conclusion 99
	Acknowledgments 100
	References 100
	6. Kinetic Monte-Carlo methods 106
	6.1. Introduction 106
	6.2. Background 106
	6.3. Atomistic kinetic Monte Carlo 108
	6.4. Object kinetic Monte Carlo 108
	6.5. Event and first-passage kinetic Monte Carlo 110
	6.6. Other advanced models 110
	6.7. Conclusions 111
	Acknowledgements 112
	References 113
	7. Dislocation dynamics 116
	7.1. Introduction 116
	7.2. Dislocation dynamics: Methodology 117
	7.3. Interaction between dislocations and defects 118
	7.4. Collective behaviour: What can dislocation dynamics predict? 122
	7.5. Limitations, needs and challenges 124
	References 126
	8. Introduction to the phase-field modelling technique: A primer on the Allen-Cahn and Cahn-Hilliard models 128
	8.1. Introduction 128
	8.2. The Allen-Cahn model 130
	8.3. The Cahn-Hilliard model 134
	8.4. Phase stability, decomposition and nucleation 136
	8.5. Connection to equilibrium thermodynamics 137
	8.6. Summary and future directions 140
	Acknowledgements 140
	References 140
	9. A review of the rate theory of defect clustering in irradiated materials 143
	9.1. Introduction and background 143
	9.2. Physics of radiation-induced point defects 144
	9.3. Classical nucleation theory 146
	9.4. Rate theory models of nucleation and growth 151
	9.5. Evolution of the size distribution and the Fokker-Planck approximation 154
	9.6. Stress effects in rate theory models and the dislocation bias 155
	9.7. Space-time rate theory 156
	9.8. Conclusions and research needs 157
	References 158
	10. Finite element based material modelling of nuclear fuel 161
	10.1. Introduction 161
	10.2. Modelling of UO2 fuel viscoplasticity 163
	10.3. Constitutive modelling of fuel pellet fracture 170
	10.4. Finite element implementation 175
	10.5. Model limitations 176
	References 177
	Conclusions 178
	1.  Density functional theory
	1.1. Introduction
	1.2. The first-principles approach and the density functional theorems
	1.3. Choice of functionals
	1.4. Density functional theory implementations
	1.5. Scope of density functional theory
	1.6. The use of density functional theory in nuclear materials research
	1.7. Conclusions and outlook

	2.  Ab-Initio molecular dynamics
	2.1. Introduction 
	2.2. Molecular dynamics
	2.3. An ab-initio potential
	2.3.1. The many-body Schrödinger equation
	2.3.2. Density functional theory
	2.3.3. The exchange and correlation functional

	2.4. Ab-initio molecular dynamics
	2.4.1. Born-Oppenheimer molecular dynamics
	2.4.2. Car-Parrinello molecular dynamics

	2.5. An efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics
	2.5.1. Density matrix propagation
	2.5.2. Electronic forces by orbital transformations
	2.5.3. Total energies and forces
	2.5.4. Modified Langevin equation
	2.5.5. Illustrative examples: liquid silicon, silica and water

	2.6. Conclusion

	3.  Classical interatomic potentials
	3.1. Introduction
	3.2. Key issues in developing classical potentials
	3.2.1. Fitting/verification
	3.2.2. Applicability/transferability

	3.3. Classification of classical potentials
	3.3.1. Description of ion
	3.3.2. Interatomic potential types
	3.3.3. Specific forms of classical potentials

	3.4. State of the art in classical potentials for nuclear fuel cycle materials
	3.4.1. Nuclear fuels
	3.4.2. Cladding/structural elements
	3.4.3. Waste forms

	3.5. Challenges and future direction for development of classical potentials for nuclear materials
	3.6. Conclusions

	4.  Molecular dynamics 
	4.1. Introduction to molecular dynamics
	4.1.1. Methodology
	4.1.2. Interatomic potentials
	4.1.3. Time/length scales 

	4.2. Modelling radiation damage using molecular dynamics
	4.2.1. Advantages 
	4.2.2. Methodology
	4.2.3. Results

	4.3. Limitations/challenges
	4.3.1. Simulation size
	4.3.2. Interatomic potentials 
	4.3.3. Electronic effects 

	4.4. Future developments

	5.  Atomistic simulation methods for long-time dynamics in materials for nuclear energy systems
	5.1. Introduction 
	5.2. Parallel replica dynamics
	5.3. Hyperdynamics
	5.4. Temperature accelerated dynamics
	5.5. Adaptive kinetic Monte Carlo
	5.6. κ-Dynamics
	5.7. Example applications
	5.7.1. Void evolution in fcc metals
	5.7.2. Non-equilibrium transport processes
	5.7.3. Defect interactions with grain boundaries

	5.8. Limitations and ongoing challenges
	5.9. Advances from 2013 to 2018
	5.10. Conclusion

	6.  Kinetic Monte-Carlo methods
	6.1. Introduction
	6.2. Background
	6.3. Atomistic kinetic Monte Carlo
	6.4. Object kinetic Monte Carlo
	6.5. Event and first-passage kinetic Monte Carlo
	6.6. Other advanced models
	6.7. Conclusions

	7.  Dislocation dynamics
	7.1. Introduction
	7.2. Dislocation dynamics: Methodology
	7.2.1. Continuum description of dislocations
	7.2.2. Constitutive rules
	7.2.3. Numerical issues
	7.2.4. Input for dislocation dynamics for irradiation-induced defects

	7.3. Interaction between dislocations and defects
	7.4. Collective behaviour: What can dislocation dynamics predict?
	7.4.1. 3D simulations
	7.4.2. 2D simulations

	7.5. Limitations, needs and challenges
	7.5.1. Inherent limitations
	7.5.2. Practical limitations (at this moment)
	7.5.3. Needs


	8.  Introduction to the phase-field modelling technique: A primer on the Allen-Cahn and Cahn-Hilliard models
	8.1. Introduction
	8.2. The Allen-Cahn model
	8.3. The Cahn-Hilliard model
	8.4. Phase stability, decomposition and nucleation
	8.4.1. Solution of the phase-field equations 

	8.5. Connection to equilibrium thermodynamics
	8.6. Summary and future directions

	9.  A review of the rate theory of defect clustering in irradiated materials
	9.1. Introduction and background
	9.2. Physics of radiation-induced point defects
	9.3. Classical nucleation theory
	9.3.1. Becker-Döring theory
	9.3.2. Extension to radiation damage

	9.4. Rate theory models of nucleation and growth
	9.4.1. General clustering rate theory
	9.4.2. Reduced-set rate theory for high helium generation

	9.5. Evolution of the size distribution and the Fokker-Planck approximation
	9.6. Stress effects in rate theory models and the dislocation bias
	9.7. Space-time rate theory
	9.8. Conclusions and research needs

	10.  Finite element based material modelling of nuclear fuel
	10.1. Introduction
	10.2. Modelling of UO2 fuel viscoplasticity
	10.2.1. Determination of (
	10.2.2. Creep law
	10.2.3. Determination of (0
	10.2.4. Derivation of constitutive equations

	10.3. Constitutive modelling of fuel pellet fracture
	10.3.1. Uniaxial response
	10.3.2. Multi-axial fracture

	10.4. Finite element implementation
	10.5. Model limitations

	Blank Page

